Skip to main content
Log in

Staminate flower of Prunus s. l. (Rosaceae) from Eocene Rovno amber (Ukraine)

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The late Eocene ambers provide plethora of animal and plant fossils including well-preserved angiosperm flowers from the Baltic amber. The Rovno amber from NW Ukraine resembles in many aspects the Baltic amber; however, only fossilized animals and some bryophytes have yet been studied from the Rovno amber. We provide the first detailed description of an angiosperm flower from Rovno amber. The flower is staminate with conspicuous hypanthium, double pentamerous perianth and whorled androecium of 24 stamens much longer than the petals. Sepals are sparsely pubescent and petals are densely hirsute outside. The fossil shares important features with extant members of Prunus subgen. Padus s. l. (incl. Laurocerasus, Pygeum and Maddenia), especially with its evergreen paleotropical species. It is described here as a new species Prunus hirsutipetala D.D.Sokoloff, Remizowa et Nuraliev. Our study provides the first convincing record of fossil flowers of Rosaceae from Eocene of Europe and the earliest fossil flower of Prunus outside North America. Our record of a plant resembling extant tropical species supports palaeoentomological evidences for warm winters in northwestern Ukraine during the late Eocene, as well as suggesting a more significant role of tropical insects in Rovno amber than inferred from Baltic amber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(source of the material from a wild tree growing near Shurugwi in Zimbabwe). The uppermost flower is functionally male. g Prunus hirsutipetala sp. nov., light microscopy. Holotype, K-10028F (SIZK). Side view of the flower. h Prunus ceylanica (Wight) Miq., image taken by D. Valke 25.09.2015 in Ambenali Ghat, India. All flowers are staminate. i P. ilicifolia (Nutt. ex Hook. et Arn.) D. Dietr., image taken by Z.V. Akulova-Barlow 28.03.2017 in San Francisco, California. One of the flowers is staminate

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Airy Shaw HK (1948) Thymelaeaceae–Gonystyloideae. In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol 4. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 349–365

    Google Scholar 

  • Akhmetiev MA (2017) Leaf morphology of Rosaceae in extant and fossil Cenozoic floras of Eurasia. In: Sokoloff DD (ed) Taxonomy and evolutionary morphology of plants: materials of the Conference dedicated to 85 anniversary of V.N. Tikhomirov. MaksPress, Moscow, pp 90–93

  • Aleksandrova GN, Zaporozhets NI (2008a) Palynological characteristics of Upper Cretaceous and Paleogene deposits on the west of the Sambian Peninsula (Kaliningrad region), Part 1. Stratigr Geol Correl 16:295–316

    Google Scholar 

  • Aleksandrova GN, Zaporozhets NI (2008b) Palynological characteristics of Upper Cretaceous and Paleogene deposits on the west of the Sambian Peninsula (Kaliningrad region), Part 2. Stratigr Geol Correl 16:528–539

    Google Scholar 

  • Alekseev VI (2013) The beetles (Insecta: Coleoptera) of Baltic amber: the checklist of described species and preliminary analysis of biodiversity. Zool Ecol 3:5–12

    Google Scholar 

  • Baranelli JL, Cocucci AA, Anton AM (1995) Reproductive biology in Acacia caven (Mol.) Mol. (Leguminosae) in the central region of Argentina. Bot J Linn Soc 119:65–76

    Google Scholar 

  • Basinger JF (1976) Paleorosa similkameenensis, gen. et sp. nov., permineralized flowers (Rosaceae) from the Eocene of British Columbia. Can J Bot 54:2293–2305

    Google Scholar 

  • Belsham SR, Orlovich DA (2002) Development of the hypanthium and androecium in New Zealand Myrtoideae (Myrtaceae). New Zeal J Bot 40:687–695

    Google Scholar 

  • Belsham SR, Orlovich DA (2003a) Development of the hypanthium and androecium in South American Myrtoideae (Myrtaceae). New Zeal J Bot 41:161–169

    Google Scholar 

  • Belsham SR, Orlovich DA (2003b) Development of the hypanthium and androecium in Acmena smithii and Syzygium australe (Acmena alliance, Myrtaceae). Austral Syst Bot 16:621–628

    Google Scholar 

  • Benedict JC, DeVore ML, Pigg KB (2011) Prunus and Oemleria (Rosaceae) flowers from the late early Eocene Republic flora of northeastern Washington State, USA. Int J Plant Sci 172:948–958

    Google Scholar 

  • Bortiri E, Heuvel BV, Potter D (2006) Phylogenetic analysis of morphology in Prunus reveals extensive homoplasy. Plant Syst Evol 259:53–71

    Google Scholar 

  • Carrucan AE, Drinnan AN (2000) The ontogenetic basis for floral diversity in the Baeckea Sub-Group (Myrtaceae). Kew Bull 55:593–613

    Google Scholar 

  • Cevallos-Ferriz SRS (1989) Rosaceous wood and fruits from the Middle Eocene Princeton chert (Allenby Fm.) of British Columbia, Canada. Am J Bot 76(Suppl):160

    Google Scholar 

  • Cevallos-Ferriz SRS, Stockey RA (1990) Vegetative remains of the Rosaceae from the Princeton chert (Middle Eocene) of British Columbia. IAWA J 11:261–280

    Google Scholar 

  • Cevallos-Ferriz SRS, Stockey RA (1991) Fruits and seeds from the Princeton chert (Middle Eocene) of British Columbia: Rosaceae (Prunoideae). Bot Gaz 152:369–379

    Google Scholar 

  • Cevallos-Ferriz SRS, Erwin DM, Stockey RA (1993) Further observations on Paleorosa similkameenensis (Rosaceae) from the Middle Eocene Princeton chert of British Columbia, Canada. Rev Palaeobot Palynol 78:277–291

    Google Scholar 

  • Chen J, Turland NJ (2007) Combretaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, 13. Science Press and Missouri Botanical Garden, Beijing, pp 309–320

    Google Scholar 

  • Chin S-W, Wen J, Johnson G, Potter D (2010) Merging Maddenia with the morphologically diverse Prunus (Rosaceae). Bot J Linn Soc 164:236–245

    Google Scholar 

  • Chin S-W, Shaw J, Haberle R, Wen J, Potter D (2014) Diversification of almonds, peaches, plums and cherries—molecular systematics and biogeographic history of Prunus (Rosaceae). Mol Phylogenet Evol 76:34–48

    PubMed  Google Scholar 

  • Conwentz H (1886) Die Angiospermen des Bernsteins. In: Göppert HR, Menge A (eds) Die Flora des Bernsteins und ihre Beziehungen zur Flora der Tertiärformation und der Gegenwart, Bd 2. Engelmann, Danzig, pp 1–140

    Google Scholar 

  • Cowan RS (1998) Mimosaceae (excl. Acacia). In: McCarthy PM (ed) Flora of Australia, vol 12. Frankland Pty Ltd, Melbourne, pp 1–50

    Google Scholar 

  • Crepet WL, Nixon KC (1996) The fossil history of stamens. In: D’Arcy WG, Keating RC (eds) The anther: form, function and phylogeny. Cambridge University Press, Cambridge, pp 25–57

    Google Scholar 

  • Crepet WL, Nixon KC, Gandolfo MA (2004) Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am J Bot 91:1666–1682

    PubMed  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • DeVore ML, Pigg KB (2007) A brief review of the fossil history of the family Rosaceae with a focus on the Eocene Okanogan Highlands of eastern Washington State, USA, and British Columbia, Canada. Plant Syst Evol 266:45–57

    Google Scholar 

  • DeVore ML, Pigg KB (2010) Floristic composition and comparison of middle Eocene to late Eocene and Oligocene floras in North America. Bull Geosci 85:111–134

    CAS  Google Scholar 

  • DeVore ML, Pigg KB (2012) New studies of fossil Rosaceae from the upland early-middle Eocene Okanogan Highlands floras of British Columbia, Canada and Republic, Washington, USA. In: Abstracts of the 13th International Palynological Congress and 9th International Organization of Palaeobotany Conference. Chuo University, Tokyo, p 45

  • Dlussky GM, Rasnitsyn AP (2009) Ants (Insecta: Vespida: Formicidae) in the Upper Eocene amber of Central and Eastern Europe. Paleontol J 43:1024–1042

    Google Scholar 

  • Drinnan A, Carrucan A (2005) The ontogenetic basis for floral diversity in Agonis, Leptospermum and Kunzea (Myrtaceae). Plant Syst Evol 251:71–88

    Google Scholar 

  • Eichler AW (1867) Combretaceae. In: Martius KFP, Eichler AW (eds) Flora Brasiliensis, vol 14. pt 2. Oldenbourg, Monachii et Lipsiae, pp 11–127

    Google Scholar 

  • Eichler AW (1875) Blüthendiagramme. Engelmann, Leipzig

  • Erdei B, Utescher T, Hably L, Tamás J, Roth-Nebelsick A, Grein M (2012) Early Oligocene continental climate of the Palaeogene Basin (Hungary and Slovenia) and the surrounding area. Turkish J Earth Sci 21:153–186

    CAS  Google Scholar 

  • Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484

    CAS  PubMed  Google Scholar 

  • Evans RC, Dickinson TA (1996) North American black-fruited hawthorns. II. Floral development of 10- and 20-stamen morphotypes in Crataegus section Douglasii (Rosaceae: Maloideae). Am J Bot 83:961–978

    Google Scholar 

  • Evans RC, Dickinson TA (1999a) Floral ontogeny and morphology in subfamily Amygdaloideae T. & G. (Rosaceae). Int J Plant Sci 160:955–979

    CAS  PubMed  Google Scholar 

  • Evans RC, Dickinson TA (1999b) Floral ontogeny and morphology in subfamily Spiraeoideae Endl. (Rosaceae). Int J Plant Sci 160:981–1012

    CAS  PubMed  Google Scholar 

  • Evans RC, Dickinson TA (2005) Floral ontogeny and morphology in Gillenia (“Spiraeoideae”) and subfamily Maloideae C. Weber (Rosaceae). Int J Plant Sci 166:427–447

    Google Scholar 

  • Exell AW (1948) Combretaceae. In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol 4. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 533–589

    Google Scholar 

  • Fedotova ZA, Perkovsky EE (2009) New gall midges of the tribe Leptosynini (Diptera, Cecidomyiidae) from the Late Eocene ambers and the classification of the supertribe Heteropezidi. Paleontol J 43:1101–1179

    Google Scholar 

  • Fedotova ZA, Perkovsky EE (2015) New gall midges (Diptera, Cecidomyiidae, Stomatosematidi, Brachineuridi) from the Late Eocene Amber of Gulyanka (Zhitomir Region, Ukraine). Paleontol J 49:270–278

    Google Scholar 

  • Fedotova ZA, Perkovsky EE (2017) New genus and species of gall midges (Diptera, Cecidomyiidae, Porricondylinae, Holoneurini) from the Late Eocene Amber of Olevsk (Zhitomir Region, Ukraine). Vestn Zool 51:23–30

    Google Scholar 

  • Focke WO (1888) Rosaceae. In: Engler A Prantl K Die natürlichen Pflanzenfamilien, vol 3. part 3. Engelmann, Leipzig, pp 1–61

    Google Scholar 

  • Friis EM, Crane PR, Pedersen KR, Bengtson S, Donoghue PCJ, Grimm GW, Stampanoni M (2007) Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. Nature 450:549–552

    CAS  PubMed  Google Scholar 

  • Friis EM, Pedersen KR, von Balthazar M, Grimm GW, Crane PR (2009) Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the Early Cretaceous of Portugal. Int J Plant Sci 170:1086–1101

    Google Scholar 

  • Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Friis EM, Marone F, Pedersen RR, Crane PR, Stampanoni M (2014) Three-dimensional visualization of fossil flowers, fruits, seeds, and other plant remains using synchrotron radiation X-ray tomographic microscopy (SRXTM): new insights into Cretaceous plant diversity. J Paleontol 88:684–701

    Google Scholar 

  • Gómez-Acevedo SL, Magallón S, Rico-Arce L (2007) Floral development in three species of Acacia (Leguminosae, Mimosoideae). Austral J Bot 55:30–41

    Google Scholar 

  • Graham SA (2007) Lythraceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 9. Flowering plants. Eudicots: Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales, Myrtales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae. Springer, Heidelberg, pp 226–246

    Google Scholar 

  • Guenard B, Perrichot V, Economo EP (2015) Integration of global fossil and modern biodiversity data reveals dynamism and stasis in ant macroecological patterns. J Biogeogr 42:2302–2312

    Google Scholar 

  • Hewson HJ, Beesley PL (1990) Lythraceae. In: George AS (ed) Flora of Australia, vol 18. Australian Government Publishing Service, Canberra, pp 91–113

    Google Scholar 

  • Ho PH (1992) Thymelaeaceae. In: Morat P (ed) Flore du Cambodge, du Laos et du Vietnam, vol 26. Muséum national d’histoire naturelle, Paris, pp 38–81

    Google Scholar 

  • Hooker JD, Thomson T (1854) On Maddenia and Diaplarche, new genera of Himalayan plants. Hook J Bot 6:380–384

    Google Scholar 

  • Hou D (1960) Thymelaeaceae. In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol 6. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 1–48

    Google Scholar 

  • Hou D, Larsen K, Larsen SS (1996) Caesalpiniaceae (Leguminosae-Caesalpinioideae). In: Kalkman C et al (eds) Flora Malesiana, ser 1, vol 12. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 409–730

    Google Scholar 

  • Hyde MA, Wursten BT, Ballings P, Coates Palgrave M (2017) Flora of Zimbabwe: Cultivated species information—individual images: Prunus africana

  • Ignatov MS, Perkovsky EE (2011) Mosses from Rovno amber (Ukraine). Arctoa 20:1–18

    Google Scholar 

  • Ignatov MS, Perkovsky EE (2013) Mosses from Rovno amber (Ukraine), 2. Arctoa 22:83–92

    Google Scholar 

  • Ignatov MS, Schäfer-Verwimp A, Perkovsky EE, Heinrichs J (2016) Mosses from Rovno amber (Ukraine), 3. Pottiodicranum, a new moss genus from the Late Eocene. Arctoa 25:229–235

    Google Scholar 

  • Ivanov VD, Melnitsky SI, Perkovsky EE (2016) Caddisflies from Cenozoic resins of Europe. Paleontol J 50:485–493

    Google Scholar 

  • Jałoszyński P, Perkovsky E (2016) Diversity of Scydmaeninae (Coleoptera: Staphylinidae) in Upper Eocene Rovno amber. Zootaxa 4157:1–85

    PubMed  Google Scholar 

  • Kalkman C (1965) The Old World species of Prunus subg. Laurocerasus including those formerly referred to Pygeum Blumea 13:1–115

    Google Scholar 

  • Kalkman C (1993) Rosaceae. In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol11. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 227–351

    Google Scholar 

  • Kalkman C (2004) Rosaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 6. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales. Springer, Heidelberg, pp 343–386

    Google Scholar 

  • Koehne K (1915) Zur Kenntnis von Prunus Grex Calycopadus und Grex Gymnopadus Sect. Laurocerasus. Bot Jahrb 52:279–233

    Google Scholar 

  • Konstantinova NA, Ignatov MS, Perkovsky EE (2012) Hepatics from Rovno amber (Ukraine). Arctoa 21:265–271

    Google Scholar 

  • Kozub D, Khmelik V, Shapoval Y, Chentsov V, Yatsenko S, Litovchenko B, Starykh V (2008) Helicon Focus Software. http://www.heliconsoft.com

  • Larsen K, Larsen SS, Vidal JE (1980) Légumineuses – Césalpinioïdées. In: Aubréville A, Leroy J-F (eds) Flore du Cambodge, du Laos et du Vietnam, vol 18. Muséum national d’histoire naturelle, Paris, pp 1–227

    Google Scholar 

  • Larsson SG (1978) Baltic amber - a palaeobiological study. Entomonograph 1:1–192

    Google Scholar 

  • Lecompte O (1969) Combretaceae. In: Aubréville A (ed) Flore du Cambodge, du Laos et du Vietnam, vol 10. Muséum national d’histoire naturelle, Paris, pp 1–119

    Google Scholar 

  • Lee S, Wen J (2001) A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of ribosomal DNA. Am J Bot 88:150–160

    CAS  PubMed  Google Scholar 

  • Lewis G, Schrire B, Mackinder B, Lock M (2005) Legumes of the World. Royal Botanic Gardens, Kew

    Google Scholar 

  • Li Y, Smith T, Liu CJ, Awasthi N, Yang J, Wang YF, Li CS (2011) Endocarps of Prunus (Rosaceae: Prunoideae) from the early Eocene of Wutu, Shandong Province, China. Taxon 60:555–564

    Google Scholar 

  • Lindenhofer A, Weber A (1999) The spiraeoid androecium of Pyroideae and Amygdaloideae (Rosaceae). Bot Jahrb 121:583–605

    Google Scholar 

  • Lindenhofer A, Weber A (2000) Diversification of the androecium within Rosaceae. Linz Biol Beitr 32:670–671

    Google Scholar 

  • Liu XL, Wen J, Nie ZL, Johnson G, Liang ZS, Chang ZY (2013) Polyphyly of the Padus group of Prunus (Rosaceae) and the evolution of biogeographic disjunctions between eastern Asia and eastern North America. J Plant Res 126:351–361

    PubMed  Google Scholar 

  • Lowry PP, Plunkett GM, Frodin DG (2013) Revision of Plerandra (Araliaceae). I. A synopsis of the genus with an expanded circumscription and a new infrageneric classification. Brittonia 65:42–61

    Google Scholar 

  • LPWG (The Legume Phylogeny Working Group) (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77

    Google Scholar 

  • Lu LD, Gu CZ, Li CL, Alexander C, Bartholomew B, Brach AR, Boufford DE, Ikeda H, Ohba H, Robertson KR, Spongberg SA (2003) Rosaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, 9. Science Press and Missouri Botanical Garden, Beijing, pp 46–434

    Google Scholar 

  • Mai DH (1984) Karpologische Untersuchungen der Steinkerne fossiler und rezenter Amygdalaceae (Rosales). Feddes Repert 95:299–322

    Google Scholar 

  • Mamontov YS, Heinrichs J, Schäfer-Verwimp A, Ignatov MS, Perkovsky EE (2013) Hepatics from Rovno amber (Ukraine), 2. Acrolejeunea ucrainica sp. nov. Arctoa 22:93–96

    Google Scholar 

  • Mamontov YS, Heinrichs J, Schäfer-Verwimp A, Ignatov MS, Perkovsky EE (2015a) Hepatics from Rovno amber (Ukraine), 4. Frullania riclefgrollei, sp. nov. Rev Palaeobot Palynol 223:31–36

    Google Scholar 

  • Mamontov YS, Heinrichs J, Váňa J, Ignatov MS, Perkovsky EE (2015b) Hepatics from Rovno amber (Ukraine), 3. Anastrophyllum rovnoi sp. nov. Arctoa 24:43–46

    Google Scholar 

  • Mamontov YS, Heinrichs J, Váňa J, Ignatov MS, Perkovsky EE (2015c) Hepatics from Rovno amber (Ukraine), 5. Cephaloziella nadezhdae sp. nov. Arctoa 24:289–293

    Google Scholar 

  • Mamontov YS, Hentschel J, Konstantinova NA, Perkovsky EE, Ignatov MS (2017a) Hepatics from Rovno amber (Ukraine), 6. Frullania rovnoi, sp. nov. J Bryol 39:336–341

    Google Scholar 

  • Mamontov YS, Ignatov MS, Perkovsky EE (2017b) Hepatics from Rovno amber (Ukraine), 7. Frullania zerovii, sp. nov. Nova Hedwigia 106:103–113

    Google Scholar 

  • Manchester SR (1994) Fruits and seeds of the Middle Eocene Nut Beds flora, Clarno Formation, North Central Oregon. Palaeontogr Amer 58:1–205

    Google Scholar 

  • Mänd K, Muehlenbachs K, McKellar RC, Wolfe AP, Konhauser K (2018) Distinct origins for Rovno and Baltic ambers: evidence from carbon and hydrogen stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 505:265–283

    Google Scholar 

  • Mason SC (1913) The pubescent-fruited species of Prunus of the Southwestern States. J Agric Res 1:147–178

    Google Scholar 

  • Meijering E (2015) FeatureJ: an ImageJ Plugin Suite for image feature extraction. Ver. 2.0.0. http://imagescience.org/meijering/software/featurej/

  • Mendes EJ (1978) Prunus africana. In: Timberlake JR, Martins ES (eds) Flora Zambesiaca. Royal Botanic Gardens, Kew, p 7

    Google Scholar 

  • Menge A (1858) Beitrag zur Bernsteinflora. Neueste Schriften der Naturforschenden Gesellschaft zu Danzig 6:1–18

    Google Scholar 

  • Moreau JD, Néraudeau D, Perrichot V, Tafforeau P (2017) 100-million-year-old conifer tissues from the mid-Cretaceous amber of Charente (western France) revealed by synchrotron microtomography. Ann Bot 119:117–128

    CAS  PubMed  Google Scholar 

  • Nadein KS, Perkovskу EE, Moseyko AG (2016) New Late Eocene Chrysomelidae (Insecta: Coleoptera) from Baltic, Rovno and Danish ambers. Papers Palaeontol 2:117–137

    Google Scholar 

  • Nielsen I (1981) Légumineuses – Mimosoïdées. In: Aubréville A, Leroy J-F (eds) Flore du Cambodge, du Laos et du Vietnam, vol 19. Muséum national d’histoire naturelle, Paris, pp 1–159

    Google Scholar 

  • Nielsen I (1992) Mimosaceae (Leguminosae–Mimosoideae). In: van Steenis CGGJ (ed) Flora Malesiana, ser 1, vol 11. Rijksherbarium/Hortus Botanicus, Leiden University, Leiden, pp 1–226

    Google Scholar 

  • Nuraliev MS, Oskolski AA, Sokoloff DD, Remizowa MV (2010) Flowers of Araliaceae: structural diversity, developmental and evolutionary aspects. Plant Div Evol 128:247–268

    Google Scholar 

  • Orlovich DA, Drinnan AN, Ladiges PY (2003) Floral development in Melaleuca and Callistemon (Myrtaceae). Austral Syst Bot 11:689–710

    Google Scholar 

  • Pedley L (1990) Combretaceae. In: George AS (ed) Flora of Australia, vol 18. Australian Government Publishing Service, Canberra, pp 255–293

    Google Scholar 

  • Penney D (2016a) Sub/fossil resin research in the 21st Century: trends and perspectives. Paläont Zeitschr 90:425–447

    Google Scholar 

  • Penney D (2016b) Amber palaeobiology: Research trends and perspectives for the 21st century. Siri Scientific Press, Manchester

    Google Scholar 

  • Perkovsky EE (2011) Syninclusions of the Eocene winter ant Prenolepis henshei (Hymenoptera: Formicidae) and Germaraphis aphids (Hemiptera: Eriosomatidae) in Late Eocene Baltic and Rovno amber: some implications. Russ Entomol J 20:303–313

    Google Scholar 

  • Perkovsky EE (2013) Eohelea sinuosa (Meunier, 1904) (Diptera, Ceratopogonidae) in Late Eocene Ambers of Europe. Paleontol J 47:503–512

    Google Scholar 

  • Perkovsky EE (2016) Tropical and Holarctic ants in Late Eocene ambers. Vestn Zool 50:111–122

    Google Scholar 

  • Perkovsky EE, Rasnitsyn AP (2013) First records of Scolebythidae and Chrysididae (Hymenoptera, Chrysidoidea) in Rovno amber. Vestn Zool 47:14–19

    Google Scholar 

  • Perkovsky EE, Wegierek P (2018) Aphid-Buchnera-Ant symbiosis, or why are aphids rare in the tropics and very rare further south? Earth Environ Sci Trans R Soc Edinb 107:297–310

    Google Scholar 

  • Perkovsky EE, Zosimovich VY, Vlaskin AP (2003) Rovno amber insects: first results of analysis. Russ Entomol J 12:119–126

    Google Scholar 

  • Perkovsky EE, Rasnitsyn AP, Vlaskin AP, Taraschuk MV (2007) A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples. Afr Invertebr 48:229–245

    Google Scholar 

  • Perkovsky EE, Zosimovich VY, Vlaskin AP (2010) Rovno Amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 116–136

    Google Scholar 

  • Perkovsky EE (2017) Comparison of biting midges of the Early Eocene Cambay amber (India) and Late Eocene European Ambers supports the independent origin of European ambers. Vestn Zool 51:275–284

    Google Scholar 

  • Pielińska A (1990) The list of plant inclusions in Baltic amber from collections of the Museum of the Earth in Warsaw. Pr Muz Ziemi 41:147–148

    Google Scholar 

  • Pigg KB, DeVore ML (2016) A review of the plants of the Princeton chert (Eocene, British Columbia, Canada). Botany 94:661–681

    Google Scholar 

  • Pimenova NV (1937) The flora of the Tertiary sandstones of the western bank-region of the Dnieper in the Ukr.S.S.R. Trans Inst Geol Acad Sci Ukrainian SSR 12:1–135 (in Ukrainian)

    Google Scholar 

  • Pojarkova A (1939) Aruncus. In: Komarov VL (ed) Flora of USSR, 9. Nauka, Moscow, pp 309–312

    Google Scholar 

  • Popov SV, Akhmetiev MA, Bugrova EM, Lopatin AV, Amitrov OV, Andreyeva-Grigorovich AS, Zherikhin VV, Zaporozhets NI, Nikolaeva IA, Krasheninnikov VA, Kuzmicheva EI, Sychevskaja EK, Shcherba IG (2001) Biogeography of the northern Peri-Tethys from the Late Eocene to the Early Miocene. Part 1. Late Eocene. Paleontol J 35(Suppl. 1):1–68

    Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh SH, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43

    Google Scholar 

  • Prigge BA (2002) A new species of Prunus (Rosaceae) from the Mojave desert of California. Madroño 49:285–288

    Google Scholar 

  • Primack RB, Lloyd DG (1980) Andromonoecy in the New Zealand montane shrub manuka, Leptospermum scoparium (Myrtaceae). Am J Bot 67:361–368

    Google Scholar 

  • Qin H, Graham S, Gilbert MG (2007) Lythraceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, 13. Science Press and Missouri Botanical Garden, Beijing, pp 274–289

    Google Scholar 

  • Rappsilber I (2016) Fauna und Flora des Bitterfelder Bernsteinwaldes—Eine Auflistung der bis 2014 publizierten Organismentaxa aus dem Bitterfelder Bernstein. Ampyx, Halle

    Google Scholar 

  • Rasband WS (2014) ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/

  • Roemer MJ (1847) Familiarum naturalium regni vegetabilis synopses monographicae, fasc 3, Rosiflorae. Landes-Industrie-Comptoir, Vimariae

    Google Scholar 

  • Roher JR (2015) Prunus. In: Flora of North America Editorial Committee (eds) Flora of North America, 9. Published online at http://www.efloras.org

  • Ronse De Craene LP (1992) The androecium of the Magnoliophytina: characterisation and systematic importance. Dissertation, KU Leuven

  • Ronse De Craene LP (2003) The evolutionary significance of homeosis in flowers: a morphological perspective. Int J Plant Sci 164(5 Suppl.):S225–S235

    Google Scholar 

  • Ronse De Craene LP (2010) Floral diagrams: an aid to understanding flower morphology and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Ronse De Craene LP, Smets E (1991) The impact of receptacular growth on polyandry in the Myrtales. Bot J Linn Soc 105:257–269

    Google Scholar 

  • Ronse De Craene LP, Smets EF (1996) The morphological variation and systematic value of stamen pairs in the Magnoliatae. Feddes Repert 107:1–17

    Google Scholar 

  • Ross JH (1998) Caesalpiniaceae. In: McCarthy PM (ed) Flora of Australia, vol 12. Frankland Pty Ltd, Melbourne, pp 50–178

    Google Scholar 

  • Rye BL (1990) Thymelaeaceae (excluding Kelleria). In: George AS (ed) Flora of Australia, vol 18. Australian Government Publishing Service, Canberra, pp 122–215

    Google Scholar 

  • Sadowski E-M (2017) Towards a new picture of the ‘Baltic amber forest’—flora, habitat types, and palaeoecology. Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium”. Georg-August-Universität, Göttingen

  • Schönenberger J, von Balthazar M, Takahashi M, Xiao X, Crane PR, Herendeen PS (2012) Glandulocalyx upatoiensis, a fossil flower of Ericales (Actinidiaceae/Clethraceae) from the Late Cretaceous (Santonian) of Georgia, USA. Ann Bot 109:921–936

    PubMed  PubMed Central  Google Scholar 

  • Shi S, Li J, Sun J, Yu J, Zhou S (2013) Phylogeny and Classification of Prunus sensu lato (Rosaceae). J Integr Plant Biol 55:1069–1079

    CAS  PubMed  Google Scholar 

  • Simutnik SA, Perkovsky EE (2018) Archaeocercus gen. nov. (Hymenoptera, Chalcidoidea, Encyrtidae) from Late Eocene Rovno Amber. Zootaxa 4441:543–548

    CAS  PubMed  Google Scholar 

  • Smith SY, Collinson ME, Rudall PJ, Simpson DA, Marone F, Stampanoni M (2009) Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants. Proc Natl Acad Sci (USA) 106:12013–12018

    CAS  Google Scholar 

  • Spahr U (1993) Systematischer Katalog und Bibliographie der Bernstein-und Kopal-Flora. Stuttg Beitr Naturk. ser B, Geol Palaontol 195:1–99

    Google Scholar 

  • Stace CA (2007) Combretaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 9. Flowering plants. Eudicots: Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales, Myrtales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae. Springer, Heidelberg, pp 67–82

    Google Scholar 

  • Sutton MD, Rahman IA, Garwood RJ (2014) Techniques for virtual palaeontology. Wiley Blackwell, Oxford

    Google Scholar 

  • Tolkanitz VI, Perkovsky EE (2018) First record of the Late Eocene ichneumon fly Rasnitsynites tarsalis Kasparyan (Ichneumonidae, Townesitinae) in Ukraine confirms correlation of the Upper Eocene Lagerstätten. Paleontol J 52:31–34

    Google Scholar 

  • Tucker SC (2003) Floral development in legumes. Plant Physiol 131:911–926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uhl D (2015) Preliminary note on fossil flowers and inflorescences from the late Oligocene of Enspel (Westerwald, W-Germany). Palaeobiodivers Palaeoenviron 95:47–53

    Google Scholar 

  • Vasconcelos TNC, Lucas EJ, Faria JEQ, Prenner G (2018) Floral heterochrony promotes flexibility of reproductive strategies in the morphologically homogeneous genus Eugenia (Myrtaceae). Ann Bot 121:161–174

    PubMed  Google Scholar 

  • Vidal JE (1968) Rosaceae 1 (excl. Rubus). In: Aubréville A (ed) Flore du Cambodge, du Laos et du Vietnam, vol 6. Muséum national d’histoire naturelle, Paris, pp 1–210

    Google Scholar 

  • Vidal JE (1970) Rosaceae. In: Smitinand T, Larsen K (eds), Flora of Thailand, 2(1). ASRCT Press, Bangkok, pp 31–74

  • Wang Y, Gilbert MG, Mathew B, Brickell CD, Nevling LI (2007) Thymelaeaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 13. Science Press and Missouri Botanical Garden, Beijing, pp 213–250

    Google Scholar 

  • Watson L, Dallwitz MJ (1992) (onwards) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Version: 19th October 2016. delta-intkey.com

  • Weitschat W, Wichard W (2002) Atlas of plants and animals in Baltic amber. Friedrich Pfeil, München

    Google Scholar 

  • Weitschat W, Wichard W (2010) Baltic amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Science Press, Manchester, pp 80–115

    Google Scholar 

  • Wen J, Shi W (2012) Revision of the Maddenia clade of Prunus (Rosaceae). PhytoKeys 11:39–59

    Google Scholar 

  • Wen J, Berggren ST, Lee CH, Ickert-Bond S, Yi TS, Yoo KO, Xie L, Shaw J, Potter D (2008) Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and ribosomal ITS sequences. J Syst Evol 46:322–332

    Google Scholar 

  • Wheeler EA, Landon J (1992) Late Eocene (Chadronian) dicotyledonous woods from Nebraska: evolutionary and ecological significance. Rev Palaeobot Palynol 74:267–282

    Google Scholar 

  • Wheeler EA, Richard RA, Barghoorn ES (1978) Fossil dicotyledonous woods from Yellowstone National Park II. J Arnold Arbor 59:1–31

    Google Scholar 

  • Wilson PG (2011) Myrtaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 10. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, pp 212–271

    Google Scholar 

  • Wolfe LM, Drapalik DJ (1999) Variation in the degree of andromonoecy in Prunus caroliniana. Castanea 64:259–262

    Google Scholar 

  • Wolfe JA, Wehr W (1988) Rosaceous Chamaebatiaria-like foliage from the Paleogene of western North America. Aliso 12:177–200

    Google Scholar 

  • Xu L, Chen D, Zhu X, Huang P, Wei Z, Sa R, Zhang D, Bao B, Wu D, Sun H, Gao X, Liu Y, Chang Z, Li J, Zhang M, Podlech D, Ohashi H, Larsen K, Welsh SL, Vincent MA, Gilbert MG, Pedley L, Schrire BD, Yakovlev GP, Thulin M, Nielsen IC, Choi B-H, Turland NJ, Polhill RM, Larsen SS, Hou D, Iokawa Y, Wilmot-Dear CM, Kenicer G, Nemoto T, Lock JM, Delgado Salinas A, Kramina TE, Brach AR, Bartholomew B, Sokoloff DD (2010) Fabaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 10. Science Press and Missouri Botanical Garden, Beijing, pp 1–577

    Google Scholar 

  • Yakovlev GP (1991) Legumes of the world [Bobovye zemnogo shara]. Nauka, Leningrad

    Google Scholar 

  • Zhang SD, Jin JJ, Chen SY, Chase MW, Soltis DE, Li HT, Yang JB, Li DZ, Yi TS (2017) Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol 214:1355–1367

    CAS  PubMed  Google Scholar 

  • Zhao L, Jiang X-W, Zuo Y-J, Liu X-L, Chin S-W, Haberle R, Potter D, Chang Z-Y, Wen J (2016) Multiple events of allopolyploidy in the evolution of the racemose lineages in Prunus (Rosaceae) based on integrated evidence from nuclear and plastid data. PLoS ONE 11:e0157123

    PubMed  PubMed Central  Google Scholar 

  • Zimmerman E, Prenner G, Bruneau A (2013) Floral morphology of Apuleia leiocarpa (Dialiinae: Leguminosae), an unusual andromonoecious legume. Int J Plant Sci 174:154–160

    Google Scholar 

Download references

Acknowledgements

We are grateful to Anatoly P. Vlaskin for cutting and polishing the sample of amber, to Zoya V. Akulova-Barlow, Richard M. Bateman, Natalia P. Maslova, Alexei A. Oskolski and Alexandr P. Rasnitsyn for discussion, to Ekaterina A. Sidorchuk, Kirill Yu. Eskov and Igor V. Shamshev for determination of syninclusions, to Lene Lauritsen and Mark Hyde for kind permission to reproduce the image of P. africana originally published by Hyde et al. (2017), to Dinesh Valke for kind permission to reproduce the image of P. ceylanica originally published at https://www.flickr.com/photos/dinesh_valke/21875999921 and to Zoya V. Akulova-Barlow for providing an unpublished photograph of P. ilicifolia and kind permission to publish it in the present paper. Morphological description and comparisons with extant taxa were carried out in accordance to Government order for the Lomonosov Moscow State University (projects No. AAAA-A16-116021660045-2, АААА-А16-116021660105-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry D. Sokoloff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokoloff, D.D., Ignatov, M.S., Remizowa, M.V. et al. Staminate flower of Prunus s. l. (Rosaceae) from Eocene Rovno amber (Ukraine). J Plant Res 131, 925–943 (2018). https://doi.org/10.1007/s10265-018-1057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-018-1057-2

Keywords

Navigation