Skip to main content
Log in

In-silico structural analysis of Pseudomonas syringae effector HopZ3 reveals ligand binding activity and virulence function

  • Regular Paper – Physiology/Biochemistry/Molecular and Cellular Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Bacterial acetyltransferase effectors belonging to the Yersinia outer protein J (YopJ) group inhibit multiple immune signaling pathways in human and plants. The present study determines in-silico acetyl-coenzyme A (AcCoA) binding and Arabidopsis immune regulator RPM1-interacting protein4 (RIN4) peptide interactions to YopJ effector hypersensitivity and pathogenesis-dependent outer proteinZ3 (HopZ3) from Pseudomonas syringae. Phylogenetic analysis revealed that HopZ3 was clustered by acetyltransferase effectors from plant bacterial pathogens. Structural juxtaposition shows HopZ3 comprises topology matched closer with HopZ1a than PopP2 effectors, respectively. AcCoA binds HopZ3 at two sites i.e., substrate binding pocket and catalytic site. AcCoA interactions to substrate binding pocket was transient and dissipated upon in-silico mutation of Ser 279 residue whereas, attachment to catalytic site was found to be stable in the presence of inositol hexaphosphate (IP6) as a co-factor. Interface atoms used for measuring hydrogen bond distances, bound or accessible surface area, and root-mean-square fluctuation (RMSF) values, suggests that the HopZ3 complex stabilizes after binding to AcCoA ligand and RIN4 peptide. The few non-conserved polymorphic residues that have been displayed on HopZ3 surface presumably confer intracellular recognitions within hosts. Collectively, homology modeling and interactive docking experiments were used to substantiate Arabidopsis immune ‘guardee’ interactions to HopZ3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baudin M, Hassan JA, Schreiber KJ, Lewis JD (2017) Analysis of the ZAR1 immune complex reveals determinants for immunity and molecular interactions. Plant Physiol 174:2038–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belkhadir Y, Nimchuk Z, Hubert DA, Mackey D, Dangl JL (2004) Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16:2822–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borah SM, Jha AN (2019) Identification and analysis of structurally critical fragments in HopS2. BMC Bioinformatics 19(Suppl 13):552

    Article  PubMed  PubMed Central  Google Scholar 

  • Boratyn GM et al (2013) BLAST: a more efficient report with usability improvements. Nucleic Acids Res 41:29–33

    Article  Google Scholar 

  • Chakraborty J, Ghosh P (2020) Advancement of research on plant NLRs evolution, biochemical activity, structural association, and engineering. Planta 252:101

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty J, Jain A, Mukherjee D, Ghosh S, Das S (2018) Functional diversification of structurally alike NLR proteins in plants. Plant Sci 269:85–93

    Article  CAS  PubMed  Google Scholar 

  • Chosed R, Tomchick DR, Brautigam CA, Mukherjee S, Negi VS, Machius M, Orth K (2007) Structural Analysis of Xanthomonas XopD Provides Insights into Substrate Specificity of Ubiquitin-like Protein Proteases. J Biol Chem 282:6773–6782

    Article  CAS  PubMed  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean P (2011) Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 35:1100–1125

    Article  CAS  PubMed  Google Scholar 

  • Desveaux D, Singer AU, Wu AJ, McNulty BC, Musselwhite L et al (2007) Type III effector activation via nucleotide binding, phosphorylation, and host target interaction. PLoS Pathog 3:e48

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolan PT, Roth AP, Xue B, Sun R, Dunker AK, Uversky VN, LaCount DJ (2015) Intrinsic disorder mediates hepatitis C virus core-host cell protein interactions. Protein Sci 24:221–235

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A (2015) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    Article  PubMed  PubMed Central  Google Scholar 

  • Galán JE, Lara-Tejero M, Marlovits TC, Wagner S (2014) Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68:415–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31:3320–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:W545–W549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hospital A, Andrio P, Fenollosa C, Cicin-Sain D, Orozco M, Gelpí JL (2012) MDWeb and MDMoby: an integrated web-based platform for molecular dynamics simulations. Bioinformatics 28:1278–1279

    Article  CAS  PubMed  Google Scholar 

  • Hung JH, Weng Z (2016) Sequence alignment and homology search with BLAST and ClustalW. Cold Spring Harb Protoc 11

  • Hurley B, Lee D, Mott A et al (2014) The Pseudomonas syringae type III effector HopF2 suppresses Arabidopsis stomatal immunity. PLoS One 9:e114921

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395

    Article  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Desveaux D, Singer AU, Patel P, Sondek J, Dangl JL (2005) The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proc Natl Acad Sci USA 102:6496–6501

    Article  CAS  PubMed  Google Scholar 

  • Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuriata A, Gierut AM, Oleniecki T, Ciemny MP, Kolinski A, Kurcinski M, Kmiecik S (2018) CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures. Nucleic Acids Res 46:338–343

    Article  Google Scholar 

  • Labriola J, Zhou Y, Nagar B (2018) Structural analysis of the bacterial effector, AvrA, identifies a critical helix involved in MKK4-substrate recognition. Biochemistry 57:4985–4996

    Article  CAS  PubMed  Google Scholar 

  • Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:299–302

    Article  Google Scholar 

  • Laskowski RA, Jablonska J, Pravda L, Varekova RS, Thornton JM (2018) PDBsum: Structural summaries of PDB entries. Protein Sci 27:129–134

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Lee AH, Hurley B, Felsensteiner C, Yea C, Ckurshumova W et al (2012) A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLoS Pathog 8:e1002523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Manning AJ, Wolfgeher D, Jelenska J, Cavanaugh KA, Xu H, Fernandez SM, Michelmore RW, Kron SJ, Greenberg JT (2015) Acetylation of an NB-LRR plant immune-effector complex suppresses immunity. Cell Rep 13:1670–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JD, Lee AH, Hassan JA, Wan J, Hurley B, Jhingree JR et al (2013) The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc Natl Acad Sci USA 110:18722–18727

    Article  CAS  PubMed  Google Scholar 

  • Lewis JD, Lee A, Ma WB, Zhou HB, Guttman DS, Desveaux D (2011) The YopJ superfamily in plant-associated bacteria. Mol Plant Pathol 12:928–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano-Duran R, Bourdais G, He SY et al (2014) The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. New Phytol 202:259–269

    Article  CAS  PubMed  Google Scholar 

  • Lupardus PJ, Shen A, Bogyo M, Garcia KC (2008) Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain. Science 322:265–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Dong FF, Stavrinides J, Guttman DS (2006) Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet 2:e209

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma KW, Jiang S, Hawara E, Lee D, Pan S, Coaker G, Song J, Ma W (2015) Two serine residues in Pseudomonas syringae effector HopZ1a are required for acetyltransferase activity and association with the host co-factor. New Phytol 208:1157–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma K, Ma W (2016) YopJ family effectors promote bacterial infection through a acetyltransferase activity. Microbiol Mol Biol Rev 80:1011–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macho AP, Zipfel C (2015) Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol 23:14–22

    Article  CAS  PubMed  Google Scholar 

  • Mackey D, Holt BF, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754

    Article  CAS  PubMed  Google Scholar 

  • Mittal R, Peak-Chew SY, McMahon HT (2006) Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc Natl Acad Sci USA 103:18574–18579

    Article  CAS  PubMed  Google Scholar 

  • Mittal R, Peak-Chew SY, Sade RS, Vallis Y, McMahon HT (2010) The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. J Biol Chem 285:19927–19934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mossessova E, Lima CD (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5:865–876

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Hao YH, Orth K (2007) A newly discovered posttranslational modification: the acetylation of serine and threonine residues. Trends Biochem Sci 32:210–216

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, Goldsmith EJ, Orth K (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312:1211–1214

    Article  CAS  PubMed  Google Scholar 

  • Negi SS, Schein CH, Oezguen N, Power TD, Braun W (2007) InterProSurf: a web server for predicting interacting sites on protein surfaces. Bioinformatics 23:3397–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orth K, Palmer LE, Bao ZQ, Stewart S, Rudolph AE, Bliska JB, Dixon JE (1999) Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285:1920–1923

    Article  CAS  PubMed  Google Scholar 

  • Orth K, Xu Z, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, Mangel WF, Staskawicz B, Dixon JE (2000) Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290:1594–1597

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pruitt RN et al (2009) Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A. J Biol Chem 284:21934–21940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero P, Obradovic Z, Li XH, Garner EC, Brown CJ (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    Article  CAS  PubMed  Google Scholar 

  • Rufián JS, Lucía A, Rueda-Blanco J, Zumaquero A, Guevara CM, Ortiz-Martín I, Ruiz-Aldea G, Macho AP, Beuzón CR, Ruiz-Albert J (2018) Suppression of HopZ Effector-Triggered Plant Immunity in a Natural Pathosystem. Front Plant Sci 9:977

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos KB, Guedes IA, Karl ALM, Dardenne LE (2020) Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-Peptide Data Set. J Chem Inf Model 60:667–683

    Article  CAS  PubMed  Google Scholar 

  • Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB, Wirthmueller L, Menke FLH, Sohn KH, Jones JDG (2015) A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Schneider DR, Saraiva AM, Azzoni AR, Miranda HR, de Toledo MA, Pelloso AC, Souza AP (2010) Overexpression and purification of PWL2D, a mutant of the effector protein PWL2 from Magnaporthe grisea. Protein Expr Purif 74:24–31

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seto D et al (2017) Expanded type III effector recognition by the ZAR1 NLR protein using ZED1-related kinases. Nat Plants 3:17027

    Article  CAS  PubMed  Google Scholar 

  • Shimono M, Lu YJ, Porter K et al (2016) The Pseudomonas syringae type-III effector HopG1 induces actin remodeling to promote symptom development and susceptibility during infection. Plant Physiol 171:2239–2255

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh DK, Calvino M, Brauer EK et al (2014) The tomato kinome and the tomato kinase library ORFeome: novel resources for the study of kinases and signal transduction in tomato and solanaceae species. Mol Plant Microbe Interact 27:7–17

    Article  PubMed  Google Scholar 

  • Sun X, Greenwood DR, Templeton MD, Libich DS, McGhie TK, Xue B, Yoon M, Cui W, Kirk CA, Jones WT et al (2014) The intrinsically disordered structural platform of the plant defence hub protein RPM1-interacting protein 4 provides insights into its mode of action in the host-pathogen interface and evolution of the nitrate-induced domain protein family. FEBS J 281:3955–3979

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  • Tasset C, Bernoux M, Jauneau A, Pouzet C, Briare C et al (2010) Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis. PLoS Pathog 6:e1001202

    Article  PubMed  PubMed Central  Google Scholar 

  • The Uniprot Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212

    Article  Google Scholar 

  • Trosky JE, Li Y, Mukherjee S, Keitany G, Ball H, Orth K (2007) VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J Biol Chem 282:34299–34305

    Article  CAS  PubMed  Google Scholar 

  • Vinatzer BA, Teitzel GM, Lee MW, Jelenska J, Hotton S, Fairfax K et al (2006) The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Mol Microbiol 62:26–44

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li J, Hou S et al (2010) A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell 22:2033–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Zhang Y (2011) Improving the Physical Realism and Structural Accuracy of Protein Models by a Two-step Atomic-level Energy Minimization. Biophys J 101:2525–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S et al (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290–301

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZM, Ma KW, Gao L et al (2017) Mechanism of host substrate acetylation by a YopJ family effector. Nat Plants 3:17115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZM, Ma KW, Yuan S et al (2016) Structure of a pathogen effector reveals the enzymatic mechanism of a novel acetyltransferase family. Nat Struct Mol Biol 23:847–852

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

No funding was received for the study.

Author information

Authors and Affiliations

Authors

Contributions

JC conceptualized and performed the research. JC wrote the manuscript.

Corresponding author

Correspondence to Joydeep Chakraborty.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, J. In-silico structural analysis of Pseudomonas syringae effector HopZ3 reveals ligand binding activity and virulence function. J Plant Res 134, 599–611 (2021). https://doi.org/10.1007/s10265-021-01274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01274-8

Keywords

Navigation