Skip to main content
Log in

Screening of mutants using chlorophyll fluorescence

  • JPR Symposium
  • Imaging, Screening and Remote Sensing of Photosynthetic Activity and Stress Responses
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Chlorophyll fluorescence has been widely used for the estimation of photosynthesis or its regulatory mechanisms. Chlorophyll fluorescence measurements are the methods with non-destructive nature and do not require contact between plant materials and fluorometers. Furthermore, the measuring process is very rapid. These characteristics of chlorophyll fluorescence measurements make them a suitable tool to screen mutants of photosynthesis-related genes. Furthermore, it has been shown that genes with a wide range of functions can be also analyzed by chlorophyll fluorescence through metabolic interactions. In this short review, we would like to first introduce the basic principle of the chlorophyll fluorescence measurements, and then explore the advantages and limitation of various screening methods. The emphasis is on the possibility of chlorophyll fluorescence measurements to screen mutants defective in metabolisms other than photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aoki M, Katoh S (1982) Oxidation and reduction of plastoquinone by photosynthetic and respiratory electron transport in a cyanobacterium Synechococcus sp. Biochem Biophys Acta 682:307–314

    CAS  Google Scholar 

  • Badger MR, Fallahi H, Kaines S, Takahashi S (2009) Chlorophyll fluorescence screening of Arabidopsis thaliana for CO2 sensitive photorespiration and photoinhibition mutants. Funct Plant Biol 36:867–873

    Article  CAS  PubMed  Google Scholar 

  • Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battchikova N, Eisenhut M, Aro E-M (2011a) Cyanobacterial NDH-1 complexes: novel insights and remaining puzzles. Biochim Biophys Acta 1807:935–944

    Article  CAS  PubMed  Google Scholar 

  • Battchikova N, Wei L, Du L, Bersanini L, Aro E-M, Ma W (2011b) Identification of novel Ssl0352 protein (NdhS), essential for efficient operation of cyclic electron transport around photosystem I, in NADPH:plastoquinone oxidoreductase (NDH-1) complexes of Synechocystis sp. PCC 6803. J Biol Chem 286:36992–37001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennoun P, Béal D (1997) Screening algal mutant colonies with altered thylakoid electrochemical gradient through fluorescence and delayed luminescence digital imaging. Photosynth Res 51:161–165

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–186

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Schreiber U (1986) Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynth Res 10:303–308

    Article  CAS  PubMed  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2-evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  PubMed  Google Scholar 

  • Bradbury M, Baker NR (1984) A quantitative determination of photochemical and non-photochemical quenching during the slow phase of the chlorophyll fluorescence induction curve of bean leaves. Biochim Biophys Acta 765:275–821

    Article  CAS  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell D, Öquist G (1996) Predicting light acclimation in cyanobacteria from nonphotochemical quenching of photosystem II fluorescence which reflects state transition in these organisms. Plant Physiol 111:1293–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell D, Hurry V, Clarke AK, Gustafsson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, Straeten VD (2007) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784

    Article  CAS  PubMed  Google Scholar 

  • Christen D, Schönmann S, Jermini M, Strasser RJ, Défago G (2007) Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca desease by in situ chlorophyll fluorescence and comparison with drought stress. Environ Exp Bot 60:504–514

    Article  CAS  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Dietz KJ, Schreiber U, Heber U (1985) The relationship between the redox state of QA and photosynthesis in leaves at various carbon dioxide, oxygen and light regimes. Planta 166:219–226

    Article  CAS  PubMed  Google Scholar 

  • Doege M, Ohmann E, Tschiersch H (2000) Chlorophyll fluorescence quenching in the alga Euglena gracilis. Photosyn Res 63:159–170

    Article  CAS  Google Scholar 

  • Duysens LNM, Sweers HE (1963) Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. Studies on microalgae and photosynthetic bacteria. University of Tokyo Press, Tokyo, pp 353–372

    Google Scholar 

  • Elkin L, Park RB (1975a) Chlorophyll fluorescence of C4 plants. I Detection with infrared color film. Planta 127:243–250

    Article  CAS  PubMed  Google Scholar 

  • Elkin L, Park RB (1975b) Chlorophyll fluorescence of C4 plants. II. A photographic technique for obtaining relative fluorescence yields and spectra photographically. Planta 127:187–199

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Asada K (1996) Dark induction of the non-photochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonas reinhardtii. Plant Cell Physiol 37:551–555

    Article  CAS  Google Scholar 

  • Fenton JM, Crofts AR (1990) Computer aided fluorescence imaging of photosynthetic systems: application of video imaging to the study of fluorescence induction in green plants and photosynthetic bacteria. Photosynth Res 26:59–66

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Zhao J, Wang X, Qin S, Wei L, Ma W (2016) NdhV is a subunit of NADPH dehydrogenase essential for cyclic electron transport in Synehcocystis sp. strain PCC 6803. Plant Physiol 170:752–760

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Gibbons GC, Smillie RM (1980) Chlorophyll fluorescence photography to detect mutants, chilling injury and heat stress. Carlsberg Res Commun 45:269–282

    Article  Google Scholar 

  • Gibbs PB, Biggins J (1989) Regulation of the distribution of excitation energy in Ochromonas danica, an organism containing a chlorophyll-A/C/carotenoid light harvesting antenna. Photosyn Res 21:81–91

    Article  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    CAS  Google Scholar 

  • Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T (2003) A nucleus encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 36:541–549

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Singh GP, Pandey R, Ramya P, Singh PK, Nivedita PKV (2018) Chlorophyll fluorescence kinetics and response of wheat (Triticum aestivum L.) under high temperature stress. Indian J Exp Biol 56:194–201

    CAS  Google Scholar 

  • Jedmowski C, Brüggemann W (2015) Imaging of fast chlorophyll fluorescence induction curve (OJIP) parameters, applied in a screening study with wild barley (Hordeum spontaneum) genotypes under heat stress. J Photochem Photobiol B Biol 151:153–160

    Article  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  CAS  PubMed  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche Zur Kohlenstoffassimilation. Naturwissenschaften 19:964–964

    Article  CAS  Google Scholar 

  • Kirilovsky D (2007) Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical quenching mechanism. Photosynth Res 93:7–16

    Article  CAS  PubMed  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115

    Article  CAS  PubMed  Google Scholar 

  • Kofer W, Koop H-U, Wanner G, Steinmüller K (1998) Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H plastoquinone-oxidoreductase in tobacco by polyethylene glycolmediated plastome transformation. Mol Gen Genet 258:166–173

    Article  CAS  PubMed  Google Scholar 

  • Kramer DM, Crofts AR (1996) Control and measurement of photosynthetic electron transport in vivo. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, Dordrecht, pp 25–66

    Google Scholar 

  • Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals Photosynth Res 5:139–157

    CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Küpper H, Benedikty Z, Morina F, Andresen E, Mishra A, Trtílek M (2019) Analysis of OJIP chlorophyll fluorescence kinetics and QA reoxidation kinetics by direct fast imaging. Plant Physiol 179:369–381

    Article  PubMed  Google Scholar 

  • Li X-P, Björkman O, Shin C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka T, Onozawa A, Sonoike K, Kore-eda S (2018) Crassulacean acid metabolism induction in Mesembryanthemum crystallinum can be estimated by non-photochemical quenching upon actinic illumination during the dark period. Plant Cell Physiol 59:1966–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meurer J, Meierhoff K, Westhoff P (1996) Isolation of high-chlorophyll-fluorescence mutants of Arabidopsis thaliana and their characterisation by spectroscopy, immunoblotting and Northern hybridisation. Planta 198:385–396

    Article  CAS  PubMed  Google Scholar 

  • Miles CD, Daniel DJ (1973) A rapid screening technique for photosynthetic mutants of higher plants. Plant Sci Lett 1:237–240

    Article  CAS  Google Scholar 

  • Misumi M, Sonoike K (2017) Characterization of the influence of chlororespiration on the regulation of photosynthesis in the glaucophyte Cyanophora paradoxa. Sci Rep 7:46100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misumi M, Katoh H, Tomo T, Sonoike K (2016) Relationship between photochemical quenching and non-photochemical quenching in six species of cyanobacteria reveals species difference in redox state and species commonality in energy dissipation. Plant Cell Physiol 57:1510–1517

    CAS  PubMed  Google Scholar 

  • Mullineaux CW, Allen JF (1986) The state 2 transition in the cyanobacterium Synechococcus 6301 can be driven by respiratory electron flow into the plastoquinone pool. FEBS Lett 205:155–160

    Article  CAS  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    Article  CAS  PubMed  Google Scholar 

  • Nedbal L, Soukupová J, Kaftan D, Whitmarsh J, Trtílek M (2000) Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynth Res 66:3–12

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Bjӧrkman O, Grossman AR (1997) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa T, Sonoike K (2015) Dissection of respiration and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803 by the analysis of chlorophyll fluorescence. J Photochem Photobiol B Biol 144:61–67

    Article  CAS  Google Scholar 

  • Ogawa T, Sonoike K (2016) Effects of bleaching by nitrogen deficiency on the quantum yield of photosystem II in Synechocystis sp. PCC 6803 revealed by chlorophyll fluorescence measurements. Plant Cell Physiol 57:558–567

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Harada T, Ozaki H, Sonoike K (2013) Disruption of the ndhF1 gene affects chlorophyll fluorescence through state transition in the cyanobacterium Synechocystis sp. PCC 6803, resulting in apparent high efficiency of photosynthesis. Plant Cell Physiol 54:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Misumi M, Sonoike K (2017) Estimation of photosynthesis in cyanobacteria by pulse amplitude modulation chlorophyll fluorescence: problems and solutions. Photosynth Res 133:63–73

    Article  CAS  PubMed  Google Scholar 

  • Omasa K, Shimazaki K-I, Aiga I, Larcher W, Onoe M (1987) Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. Plant Physiol 84:748–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oukarroum A, Madidi SE, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot 60:438–446

    Article  CAS  Google Scholar 

  • Ozaki H, Sonoike K (2009) Quantitative analysis of the relationship between induction kinetics of chlorophyll fluorescence and function of genes in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 101:47–58

    Article  CAS  PubMed  Google Scholar 

  • Ozaki H, Ikeuchi M, Ogawa T, Fukuzawa H, Sonoike K (2007) Large scale analysis of chlorophyll fluorescence kinetics in Synechocystis sp. PCC 6803: Identification of the factors involved in the modulation of photosystem stoichiometry. Plant Cell Physiol 48:451–458

    Article  CAS  PubMed  Google Scholar 

  • Peschek GA, Schmetterer G (1982) Evidence for plastoquinol-cytochrome f/b563 reductase as a common electron donor to P700 and cytochrome oxidase in cyanobacteria. Biochem Biophys Res Commun 108:1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Peterson RB, Aylor DE (1995) Chlorophyll fluorescence induction in leaves of Phaseolus vulgaris infected with Bean Rust (Uromyces appendiculatus). Plant Physiol 108:163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapacz M, Woźniczka A (2009) A selection tool for freezing tolerance in common wheat using the fast chlorophyll a fluorescence transient. Plant Breed 128:227–234

    Article  Google Scholar 

  • Ripley BS, Redfern SP, Dames J (2004) Quantification of the photosynthetic performance of phosphorus-deficient Sorghum by means of chlorophyll-a fluorescence kinetics. S Afr J Sci 100:615–618

    CAS  Google Scholar 

  • Satoh K, Butler WL (1978) Competition between the 735 nm fluorescence and the photochemistry of Photosystem I in chloroplasts at low temperature. Biochim Biophys Acta 502:103–110

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Heidelberg, pp 49–70

    Chapter  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95:9705–9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikanai T, Munekage Y, Shimizu K, Endo T, Hashimoto T (1999) Identification and characterization of Arabidopsis mutants with reduced quenching of chlorophyll fluorescence. Plant Cell Physiol 40:1134–1142

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky transient (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B Biol 104:236–257

    Article  CAS  Google Scholar 

  • Strasser RJ, Govindjee (1992) The Fo and the O-J-I-P fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (ed) Regulation of chloroplast biogenesis. Plenum Press, New York, pp 423–426

    Chapter  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 321–362

    Chapter  Google Scholar 

  • Strauss AJ, Krüger GHJ, Strasser RJ, Van Heerden PDR (2006) Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environ Exp Bot 56:147–157

    Article  CAS  Google Scholar 

  • van Rensburg L, Krüger GHJ, Eggenberg P, Strasser RJ (1996) Can screening criteria for drought resistance in Nicotiana tabacum L. be derived from the polyphasic rise of the chlorophyll a fluorescence transient (OJIP)? S Afr J Bot 62:337–341

    Article  Google Scholar 

  • Varotto C, Pesaresi P, Maiwald D, Kurth J, Salamini F, Leister D (2000) Identification of photosynthetic mutants of Arabidopsis by automatic screening for altered effective quantum yield of photosystem 2. Photosynthetica 38:497–504

    Article  CAS  Google Scholar 

  • Wilson A, Ajlani G, Verbavatz J-M, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zao J, Rong W, Gao F, Ogawa T, Ma W (2015) Subunit Q is required to stabilize the large complex of NADPH dehydrogenase in Synechocystis sp. strain PCC 6803. Plant Physiol 168:443–451

    Article  Google Scholar 

  • Zhang J, Gao F, Zao J, Ogawa T, Wang Q, Ma W (2014) NdhP is an exclusive subunit of large complex of NADPH dehydrogenase essential to stabilize the complex in Synechocystis sp. strain PCC 6803. J Biol Chem 289:18770–18781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Gao F, Zhang J, Ogawa T, Ma W (2014) NdhO, a subunit of NADPH dehydrogenase, destabilizes medium size complex of the enzyme in Synechocystis sp. strain PCC 6803. J Biol Chem 289:26669–26676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research on Innovative Areas (No. 16H06552 and No. 16H06553 to KS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kintake Sonoike.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, T., Sonoike, K. Screening of mutants using chlorophyll fluorescence. J Plant Res 134, 653–664 (2021). https://doi.org/10.1007/s10265-021-01276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01276-6

Keywords

Navigation