Skip to main content
Log in

Docosahexaenoic acid production and ultrastructure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentrations

  • Short Communication
  • Published:
Mycoscience

Abstract

The effect of high glucose concentrations on the ultrastructure and the production of docosahexaenoic acid (DHA) by Aurantiochytrium mangrovei MP2 was investigated at 25°C with orbital shaking. The cultured cells were separated into a floating and a bottom layer after centrifugation during harvest; therefore, the ultrastructure and DHA level were also analyzed separately. Cell size generally increased with glucose concentrations, whereas the overall DHA production (mg/l) increased 19% when the glucose concentration was raised from 6% to 10% w/v. Biomass and DHA production increased significantly, but not linearly, at the floating layer and decreased at the bottom layer in elevated glucose concentrations. Also, the lipid bodies of the cells in the floating layer were more heavily stained in osmium tetroxide than those in the bottom, suggesting that the cells in the floating layer may contain greater amount of unsaturated fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abril JR, Barclay WR, Abril PG (2000) Safe use of microalgae (DHA GOLDTM) in laying hen feed for the production of DHA-enriched eggs. In: Sim JS, Nakai S, Guenter W (eds) Egg nutrition and biotechnology. CAB International, Wallingford, pp 197–202

    Google Scholar 

  • Ashford A, Barclay WR, Weaver CA, Giddings TH, Zeller S (2000) Electron microscopy may reveal structure of docosahexaenoic acid-rich oil within Schizochytrium sp. Lipids 35:1377–1386

    Article  PubMed  CAS  Google Scholar 

  • Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129

    Article  CAS  Google Scholar 

  • Barclay WR, Weaver C, Metz J (2005) Development of a docosahexaenoic acid production technology using Schizochytrium: a historical perspective. In: Cohen Z, Ratledge C (eds) Single cell oil. AOCS Press, Champaign, IL, pp 36–52

    Google Scholar 

  • Bell MV, Henderson RJ, Sargent JR (1986) The role of polyunsaturated fatty acids in fish. Comp Biochem Physiol 83B:711–719

    CAS  Google Scholar 

  • Bowles RD, Hunt AE, Bremer GB, Duchars MG, Eaton RA (1999) Long-chain n-3 polyunsaturated fatty acid production by members of the marine protistan group the thraustochytrids: screening of isolates and optimisation of docosahexaenoic acid production. J Biotechnol 70:193–202

    Article  CAS  Google Scholar 

  • Bozzola JJ, Russell LD (1999) Electron microscopy: principles and techniques for biologists. Jones and Bartlett, Sudbury

    Google Scholar 

  • De Swaaf ME, Pronk JT, Sijtsma L (2003) Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61:40–43

    PubMed  Google Scholar 

  • Fan KW, Chen F, Jones EBG, Vrijmoed LLP (2001) Eicosapentaenoic and docosahexaenoic acids production by and okara-utilizing potential.of thraustochytrids. J Ind Microbiol Biotechnol 27:199–202

    Article  PubMed  CAS  Google Scholar 

  • Fan KW, Vrijmoed LLP, Jones EBG (2002) Physiological studies of subtropical mangrovei thraustochytrids. Bot Mar 45:50–57

    Article  Google Scholar 

  • Franklin ST, Martin KR, Baer RJ, Schingoethe DJ, Hippen AR (1999) Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milk of dairy cows. J Nutr 129:2048–2052

    PubMed  CAS  Google Scholar 

  • Honda D, Yokochi T, Nakahara T, Erata M, Higashihara T (1998) Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol Res 102:439–448

    Article  Google Scholar 

  • Honda D, Yokochi T, Nakahara T, Raghukumar S, Nakagiri A, Schaumann K, Higashihara T (1999) Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene. J Eukaryot Microbiol 46:637–647

    Article  PubMed  CAS  Google Scholar 

  • Kiy T, Rüsing M, Fabritius D (2005) Production of docosahexaenoic acid by the marine microalga, Ulkenia sp. In: Cohen Z, Ratledge C (eds) Single cell oil. AOCS Press, Champaign, IL, pp 36–52

    Google Scholar 

  • Lepage G, Roy CC (1984) Direct trans-esterification of all classes of lipids in a one step reaction. J Lipid Res 25:1391–1396

    PubMed  CAS  Google Scholar 

  • Lewis TE, Nichols PD, McMeekin TA (1999) The biotechnological potential of thraustochytrids. Mar Biotechnol 1:580–587

    Article  PubMed  CAS  Google Scholar 

  • Morita E, Kumon Y, Nakahara T, Kagiwada S, Noguchi T (2006) Docosahexaenoic acid production and lipid-body formation in Schizochytrium limacinum SR21. Mar Biotechnol 8:319–327

    Article  PubMed  CAS  Google Scholar 

  • Nettleton JA (1995) Omega-3 fatty acids and health. Chapman & Hall, New York

    Google Scholar 

  • Sanders TAB, Gleason K, Griffin B, Miller GJ (2006) Influence of an algal triacylglycerol containing docosahexaenoic acid (22:6 n-3) and docosapentaenoic acid (22:5 n-6) on cardiovascular risk factors in healthy men and women. Br J Nutr 95:525–531

    Article  PubMed  CAS  Google Scholar 

  • Takahata K, Monobe K, Tada M, Weber PC (1998) The benefits and risks of n-3 polyunsaturated fatty acids. Biosci Biotechnol Biochem 62:2079–2085

    Article  PubMed  CAS  Google Scholar 

  • Unagul P, Assantachai C, Phadungruengluij S, Suphantharika M, Verduyn C (2005) Properties of the docosahexaenoic acid-producer Schizochytrium mangrovei Sk-02: effects of glucose, temperature and salinity and their interaction. Bot Mar 48:387–394

    Article  CAS  Google Scholar 

  • Weete JD, Kim H, Gandhi SR, Wang Y, Dute R (1997) Lipids and ultrastructure of Thraustochytrium sp. ATCC26185. Lipids 32:839–845

    Article  PubMed  CAS  Google Scholar 

  • Wu S-T, Yu S-T, Lin L-P (2005) Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochem 40:3103–3108

    Article  CAS  Google Scholar 

  • Yayanos AA, Benson AA, Nevenzel JC (1978) The pressure-volume-temperature (PVT) properties of lipid mixture from a marine copepod, Calanus plumchrus: implications for buoyancy and sound scattering. Deep-Sea Res 25:257–268

    Article  CAS  Google Scholar 

  • Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49:72–76

    Article  CAS  Google Scholar 

  • Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomical characteristics and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes, stramenopiles): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48:199–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Clement K. M. Tsui or Lilian L. P. Vrijmoed.

About this article

Cite this article

Wong, M.K.M., Tsui, C.K.M., Au, D.W.T. et al. Docosahexaenoic acid production and ultrastructure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentrations. Mycoscience 49, 266–270 (2008). https://doi.org/10.1007/s10267-008-0415-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10267-008-0415-7

Key words

Navigation