Skip to main content
Log in

Gibt es optimale Serumprogesteronwerte in In-vitro-Fertilisations- und Kryozyklen?

Can optimal serum levels of progesterone in in vitro fertilization and frozen embryo transfer cycles be defined?

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Progesteron ist essenziell für die Bereitstellung eines rezeptiven Endometriums und für die Aufrechterhaltung einer Frühschwangerschaft. Während Progesteron bei einer Konzeption im Spontanzyklus vom Corpus luteum produziert wird, ist die Lutealphase nach hormoneller Stimulation zur Vorbereitung auf die In-vitro-Fertilisation oder intrazytoplasmatische Spermieninjektion von einer unterschiedlich stark ausgeprägten Lutealphaseninsuffizienz gekennzeichnet. Die Notwendigkeit einer Lutealphasensubstitution ist unumstritten und die Wahl derselben muss an die vorausgegangene Therapie angepasst werden. „Minimale“ und „optimale“ Progesteronwerte zum Erreichen und Erhalt einer Schwangerschaft sind weder für Transferzyklen mit frischen Embryonen noch für Transferzyklen mit kryokonservierten Embryonen eindeutig definiert.

Abstract

Progesterone is essential for endometrial receptivity, implantation and the maintenance of an early pregnancy. In spontaneous conception cycles, progesterone is produced by the corpus luteum; however, after hormonal stimulation for preparation for in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) the luteal phase is characterized by a variably severe luteal phase insufficiency. The necessity for a luteal phase support is indisputable and has to be selected according to the preceding treatment. So far, “minimal” and “optimal” ranges of progesterone levels to achieve and maintain a pregnancy are not clearly defined, neither for transfer cycles with fresh embryos nor for transfer cycles with frozen embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Alsbjerg B, Thomsen L, Elbaek HO, Laursen R, Povlsen BB, Haahr T, Humaidan P (2018) Progesterone levels on pregnancy test day after hormone replacement therapy-cryopreserved embryo transfer cycles and related reproductive outcomes. Reprod Biomed Online 37(5):641–647

    Article  CAS  PubMed  Google Scholar 

  2. Beckers NG, Macklon NS, Eijkemans MJ et al (2003) Nonsupplemented luteal phase characteristics after the administration of recombinant human chorionic gonadotropin, recombinant luteinizing hormone, or gonadotropin-releasing hormone (GnRH) agonist to induce final oocyte maturation in in vitro fertilization patients after ovarian stimulation with recombinant follicle-stimulating hormone and GnRH antagonist cotreatment. J Clin Endocrinol Metab 88:4186–4192

    Article  CAS  PubMed  Google Scholar 

  3. Christenson LK, Devoto L (2003) Cholesterol transport and steroidogenesis by the corpus luteum. Reprod Biol Endocrinol 10:90

    Article  Google Scholar 

  4. Cometti B (2015) Pharmaceutical and clinical development of a novel progesterone formulation. Acta Obstet Gynecol Scand 94:28–37

    Article  CAS  PubMed  Google Scholar 

  5. Csapo AI, Pulkkinen MO, Wiest WG (1973) Effects of luteectomy and progesterone replacement therapy in early pregnant patients. Am J Obstet Gynecol 115:759–765

    Article  CAS  PubMed  Google Scholar 

  6. Daily CA, Laurent SL, Nunley WC (1994) The prognostic value of serum progesterone and quantitative J3-human chorionic gonadotropin in early human pregnancy. Am J Obstet Gynecol 171(2):380–383

    Article  CAS  PubMed  Google Scholar 

  7. Damewood MD, Shen W, Zacur HA et al (1989) Disappearance of exogenously administered human chorionic gonadotropin. Fertil Steril 52:398–400

    Article  CAS  PubMed  Google Scholar 

  8. Devoto L, Fuentes A, Kohen P et al (2009) The human corpus luteum: life cycle and function in natural cycles. Fertil Steril 92:1067–1079

    Article  CAS  PubMed  Google Scholar 

  9. Devroey P, Palermo G, Bourgain C et al (1989) Progesterone administration in patients with absent ovaries. Int J Fertil 34:188–193

    CAS  PubMed  Google Scholar 

  10. Dosouto C, Haahr T, Humaidan P (2017) Gonadotropin-releasing hormone agonist (GnRHa) trigger—state of the art. Reprod Biol 17(1):1–8. https://doi.org/10.1016/j.repbio.2017.01.004

    Article  PubMed  Google Scholar 

  11. Fatemi HM, Popovic-Todorovic B, Papanikolaou E, Donoso P, Devroey P (2007) An update of luteal phase support in stimulated IVF cycles. Hum Reprod Update 13(6):581–590

    Article  CAS  PubMed  Google Scholar 

  12. Fatemi HM (2009) The luteal phase after 3 decades of IVF: What do we know? Reprod Biomed Online 19:4331

    Article  PubMed  Google Scholar 

  13. Fatemi HM, Polyzos NP, van Vaerenbergh I, Bourgain C, Blockeel C, Alsbjerg B et al (2013) Early luteal phase endocrine profile is affected by the mode of triggering final oocyte maturation and the luteal phase support used in recombinant follicle-stimulating hormone—gonadotropin-releasing hormone antagonist in vitro fertilization cycles. Fertil Steril 100:742–747

    Article  CAS  PubMed  Google Scholar 

  14. Fauser BC, Devroey P (2003) Reproductive biology and IVF: ovarian stimulation and luteal phase consequences. Trends Endocrinol Metab 14:236–242

    Article  CAS  PubMed  Google Scholar 

  15. Filicori M, Santoro N, Merriam GR, Crowley WF Jr (1986) Characterization of the physiological pattern of episodic gonadotropin secretion throughout the human menstrual cycle. J Clin Endocrinol Metab 62(6):1136–1144

    Article  CAS  PubMed  Google Scholar 

  16. Fishel SB, Edwards RG, Evans CJ (1984) Human chorionic gonadotropin secreted by preimplantation embryos cultured in vitro. Science 11:816–818

    Article  Google Scholar 

  17. Gaggiotti-Marre S, Álvarez M, González-Foruria I, Parriego M, Garcia S, Martínez F, Barri PN, Polyzos NP, Coroleu B (2020) Low progesterone levels on the day before natural cycle frozen embryo transfer are negatively associated with live birth rates. Hum Reprod 35(7):1623–1629

    Article  PubMed  Google Scholar 

  18. Hull MG, Savage PE, Bromham DR, Ismail AA, Morris AF (1982) The value of a single serum progesterone measurement in the midluteal phase as a criterion of a potentially fertile cycle (“ovulation”) derived form treated and untreated conception cycles. Fertil Steril 37(3):355–360

    Article  CAS  PubMed  Google Scholar 

  19. Humaidan P, Ejdrup Bredkjaer H, Bungum L, Bungum M, Grøndahl ML, Westergaard L, Andersen CY (2005) GnRH agonist (buserelin) or hCG for ovulation induction in GnRH antagonist IVF/ICSI cycles: a prospective randomized study. Hum Reprod 20(5):1213–1220

    Article  CAS  PubMed  Google Scholar 

  20. Jordan J, Craig K, Clifton DK, Soules MR (1994) Luteal phase deficiency: the sensitivity and specificity of diagnostic methods in common clinical use. Fertil Steril 62:54–62

    Article  CAS  PubMed  Google Scholar 

  21. Kofinas JD, Blakemore J, McCulloh DH, Grifo J (2015) Serum progesterone levels greater than 20 ng/dl on day of embryo transfer are associated with lower live birth and higher pregnancy loss rates. J Assist Reprod Genet 32(9):1395–1399

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kol S, Breyzman T (2016) GnRH agonist trigger does not always cause luteolysis: a case report. Reprod Biomed Online 32(1):132–134

    Article  PubMed  Google Scholar 

  23. Kol S, Breyzman T, Segal L, Humaidan P (2015) ‘Luteal coasting’ after GnRH agonist trigger—individualized, HCG-based, progesterone-free luteal support in ‘high responders’: a case series. Reprod Biomed Online 31(6):747–751

    Article  CAS  PubMed  Google Scholar 

  24. Kolibianakis EM, Devroey P (2002) The luteal phase after ovarian stimulation. Reprod Biomed Online 5:26–35

    Article  PubMed  Google Scholar 

  25. Labarta E, Mariani G, Holtmann N, Celada P, Remohí J, Bosch E (2017) Low serum progesterone on the day of embryo transfer is associated with a diminished ongoing pregnancy rate in oocyte donation cycles after artificial endometrial preparation: a prospective study. Hum Reprod 32(12):2437–2442

    Article  CAS  PubMed  Google Scholar 

  26. Lawrenz B, Sibal J, Garrido N, Abu E, Jean A, Melado L, Fatemi HM (2018) Inter-assay variation and reproducibility of progesterone measurements during ovarian stimulation for IVF. PLoS ONE 13(11):e206098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lawrenz B, Garrido N, Samir S, Ruiz F, Melado L, Fatemi HM (2017) Individual luteolysis pattern after GnRH-agonist trigger for final oocyte maturation. PLoS ONE 12(5):e176600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lawrenz B, Samir S, Melado L, Ruiz F, Fatemi HM (2018) Luteal phase serum progesterone levels after GnRH-agonist trigger—How low is still high enough for an ongoing pregnancy? Gynecol Endocrinol 34(3):195–198

    Article  CAS  PubMed  Google Scholar 

  29. Lawrenz B, Samir S, Garrido N, Melado L, Engelmann N, Fatemi HM (2018) Luteal coasting and individualization of human chorionic gonadotropin dose after gonadotropin-releasing hormone agonist triggering for final oocyte maturation—a retrospective proof-of-concept study. Front Endocrinol (Lausanne) 9:33. https://doi.org/10.3389/fendo.2018.00033

    Article  Google Scholar 

  30. Loke YW, King A, Burrows TD (1995) Decidua in human implantation. Hum Reprod 10(Suppl 2):14–21

    Article  CAS  PubMed  Google Scholar 

  31. Macklon NS, Fauser BC (2000) Impact of ovarian hyperstimulation on the luteal phase. J Reprod Fertil 55:101–108

    CAS  Google Scholar 

  32. Miles RA, Paulson RJ, Lobo RA, Press MF, Dahmoush L, Sauer MV (1994) Pharmacokinetics and endometrial tissue levels of progesterone after administration by intramuscular and vaginal routes: a comparative study. Fertil Steril 62:485–490

    Article  CAS  PubMed  Google Scholar 

  33. Nakajima ST, Nason FG, Badger GJ, Gibson M (1991) Progesterone production in early pregnancy. Fertil Steril 55(3):516–521

    Article  CAS  PubMed  Google Scholar 

  34. Neumann K, Depenbusch M, Schultze-Mosgau A, Griesinger G (2020) Characterization of early pregnancy placental progesterone production by use of dydrogesterone in programmed frozen-thawed embryo transfer cycles. Reprod Biomed Online 40(5):743–751

    Article  CAS  PubMed  Google Scholar 

  35. Nillius SJ, Johansson ED (1971) Plasma levels of progesterone after vaginal, rectal, or intramuscular administration of progesterone. Am J Obstet Gynecol 110:470–477

    Article  CAS  PubMed  Google Scholar 

  36. Patton PE, Lim JY, Hickok LR, Kettel LM, Larson JM, Pau KY (2014) Precision of progesterone measurements with the use of automated immunoassay analyzers and the impact on clinical decisions for in vitro fertilization. Fertil Steril 101(6):1629–1636

    Article  CAS  PubMed  Google Scholar 

  37. Practice Committee of the American Society for Reproductive Medicine (2012) The clinical relevance of luteal phase deficiency: a committee opinion. Fertil Steril 98(5):1112–1117

    Article  Google Scholar 

  38. Psychoyos A (1973) Hormonal control of ovoimplantation. Vitam Horm 31:201–256

    Article  CAS  PubMed  Google Scholar 

  39. Simon C, Martın JC, Pellicer A (2000) Paracrine regulators of implantation. Baillieres Best Pract Res Clin Obstet Gynaecol 14:815–826

    Article  CAS  PubMed  Google Scholar 

  40. Stricker R, Eberhart R, Chevailler M‑C, Quinn FA, Bischof P, Stricker R (2006) Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin Chem Lab Med 44:883–887

    Article  CAS  PubMed  Google Scholar 

  41. Thomsen LH, Kesmodel US, Erb K, Bungum L, Pedersen D, Hauge B, Elbæk HO, Povlsen BB, Andersen CY, Humaidan P (2018) The impact of luteal serum progesterone levels on live birth rates—a prospective study of 602 IVF/ICSI cycles. Hum Reprod 33(8):1506–1516

    Article  CAS  PubMed  Google Scholar 

  42. Vuong LN, Ho TM, Pham TD, Ho VNA, Andersen CY, Humaidan P (2020) The early luteal hormonal profile in IVF patients triggered with hCG. Hum Reprod 35(1):157–166

    Article  CAS  PubMed  Google Scholar 

  43. Yovich JL, Conceicao JL, Stanger JD, Hinchliffe PM, Keane KN (2015) Mid-luteal serum progesterone concentrations govern implantation rates for cryopreserved embryo transfers conducted under hormone replacement. Reprod Biomed Online 31:180–191

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Lawrenz.

Ethics declarations

Interessenkonflikt

B. Lawrenz und H.M. Fatemi geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

G. Griesinger, Lübeck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrenz, B., Fatemi, H.M. Gibt es optimale Serumprogesteronwerte in In-vitro-Fertilisations- und Kryozyklen?. Gynäkologische Endokrinologie 19, 118–123 (2021). https://doi.org/10.1007/s10304-020-00366-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-020-00366-3

Schlüsselwörter

Keywords

Navigation