Skip to main content
Log in

Virulence factors of Botrytis cinerea

  • REVIEW FOR THE 100TH ANNIVERSARY
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Botrytis cinerea is responsible for gray mold disease in more than 200 host plant species. The infection of host plants is mediated by numerous extracellular enzymes, proteins and metabolites. Each of these compounds may play a role in different stages of the infection process. Cell wall-degrading enzymes may facilitate the penetration into the host surface, while toxins, oxalic acid and reactive oxygen species may contribute to killing of the host cells. Cell wall-degrading enzymes contribute to the conversion of host tissue into fungal biomass. On the other hand, B. cinerea infection induces biosynthesis of phytoalexins. Therefore, the ability to overcome a wide spectrum of phytoalexins contributes to the pathogenicity of the fungus with a broad host range. The cloning of the corresponding genes has facilitated studies on gene expression and targeted mutagenesis. This review gives an overview of the research performed on virulence factors that play the roles in pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bar-Nun N, Mayer AM (1990) Cucurbitacins protect cucumber tissue against infection by Botrytis cinerea. Phytochemistry 29:787–791

    Article  CAS  Google Scholar 

  • Bateman DF, Beer SV (1965) Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55:204–211

    CAS  PubMed  Google Scholar 

  • Benito EP, ten Have A, van’t Klooster JW, van Kan JAL (1998) Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. Euro J Plant Pathol 104:207–220

    Google Scholar 

  • Bennett MH, Gallagher MDH, Bestwick CS, Rossiter JT, Mansfield JW (1994) The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremia lactucae and Pseudomonas syringae pv. phaseolicola. Physiol Mol Plant Pathol 44:321–333

    Article  CAS  Google Scholar 

  • Brito N, Espino JJ, Gonzalez C (2006) The endo-β-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol Plant Microbe Interact 19:25–32

    Article  CAS  PubMed  Google Scholar 

  • Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2191–2200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark CA, Lorbeer JW (1976) Comparative histopathology of Botrytis squamosa and B. cinerea on onion leaves. Phytopathology 66:1279–1289

    Article  Google Scholar 

  • Cole L, Dewey FM, Hawes CR (1996) Infection mechanisms of Botrytis species: pre-penetration and pre-infection processes of dry and wet conidia. Mycol Res 100:277–286

    Article  Google Scholar 

  • Cole L, Dewey FM, Hawes CR (1998) Immunocytochemical studies of the infection mechanisms of Botrytis fabae II. Host cell wall breakdown. New Phytol 139:611–622

    Article  CAS  Google Scholar 

  • Collmer A, Keen NT (1986) The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol 24:383–409

    Article  CAS  Google Scholar 

  • Colmenares AJ, Aleu J, Durán-Patrón R, Collado IG, Hernández-Galán R (2002) The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol 28:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Comménil P, Belingheri L, Sancholle M, Dehorter B (1995) Purification and properties of an extracellular lipase from the fungus Botrytis cinerea. Lipids 30:351–356

    Article  PubMed  Google Scholar 

  • Comménil P, Belingheri L, Dehorter B (1998) Antilipase antibodies prevent infection of tomato leaves by Botrytis cinerea. Physiol Mol Plant Pathol 52:1–14

    Article  Google Scholar 

  • Comménil P, Belingheri L, Bauw G, Dehorter B (1999) Molecular characterization of a lipase induced in Botrytis cinerea by components of grape berry cuticle. Physiol Mol Plant Pathol 55:37–43

    Article  Google Scholar 

  • Cutler HG, Jacyno JM, Harwood JS, Dulik D, Goodrich PD, Roberts RG (1993) Botcinolide: a biologically active natural product from Botrytis cinerea. Biosci Biotechnol Biochem 57:1980–1982

    Article  CAS  Google Scholar 

  • Deighton N, Muckenshnabel I, Colmenares AJ, Collado IG, Williamson B (2001) Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57:689–692

    Article  CAS  PubMed  Google Scholar 

  • Diaz J, ten Have A, van Kan JAL (2002) The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol 129:1341–1351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dickman MB, Mitra A (1992) Arabidopsis thaliana as a model for studying Sclerotinia sclerotiorum pathogenesis. Physiol Mol Plant Pathol 41:255–263

    Article  Google Scholar 

  • Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R (2001) Abrogation of disease development in plants expressing animal apoptotic genes. Proc Natl Acad Sci USA 98:6957–6962

    Article  CAS  PubMed  Google Scholar 

  • Durán-Patrón R, Hernández-Galán R, Collado IG (2000) Secobotrytriendiol and related sesquiterpenoids: new phytotoxic metabolites from Botrytis cinerea. J Nat Prod 63:182–184

    Article  PubMed  Google Scholar 

  • Espino JJ, Brito N, Noda J, González C (2005) Botrytis cinerea endo-β-1,4-glucanase Cel5A is expressed during infection but is not required for pathogenesis. Physiol Mol Plant Pathol 66:213–221

    Article  CAS  Google Scholar 

  • Favaron F, Sella L, D’Ovidio R (2004) Relationships among endopolygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. Mol Plant Microbe Interact 17:1402–1409

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205

    Article  CAS  PubMed  Google Scholar 

  • Frías M, González C, Brito N (2011) BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol 192:483–495

    Article  PubMed  Google Scholar 

  • Gentile AC (1954) Carbohydrate metabolism and oxalic acid synthesis by Botrytis cinerea. Plant Physiol 29:257–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Godoy G, Steadman JR, Dickman MB, Dam R (1990) Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant Pathol 37:179–191

    Article  CAS  Google Scholar 

  • Gonen L, Viterbo A, Cantone F, Staples RC, Mayer AM (1996) Effect of cucurbitacins on mRNA coding for laccase in Botrytis cinerea. Phytochemistry 42:321–324

    Article  CAS  PubMed  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  CAS  PubMed  Google Scholar 

  • Gueguen Y, Chemardin P, Arnaud A, Galzy P (1995) Purification and characterization of an intracellular β-glucosidase from Botrytis cinerea. Enzyme Microb Technol 17:900–906

    Article  CAS  Google Scholar 

  • Hayashi K, Schoonbeek H, De Waard MA (2002) Expression of the ABC transporter BcatrD from Botrytis cinerea reduces sensitivity to sterol demethylation inhibitor fungicides. Pestic Biochem Physiol 73:110–121

    Article  CAS  Google Scholar 

  • Johnston DJ, Williamson B (1992) Purification and characterization of four polygalacturonases from Botrytis cinerea. Mycol Res 96:343–349

    Article  CAS  Google Scholar 

  • Kapat A, Zimand G, Elad Y (1998) Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycol Res 102:1017–1024

    Article  CAS  Google Scholar 

  • Kars I, Krooshof GH, Wagemakers L, Joosten R, Benen JAE, van Kan JAL (2005a) Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J 43:213–225

    Article  CAS  PubMed  Google Scholar 

  • Kars I, Wagemakers CAM, McCalman M, van Kan JAL (2005b) Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Mol Plant Pathol 6:641–652

    Article  CAS  PubMed  Google Scholar 

  • Kerssies A, Frinking HD (1996) Relations between glasshouse climate and dry weight of petals, epicuticular wax, cuticle, pre-harvest flowering period and susceptibility to Botrytis cinerea of gerbera and rose flowers. Eur J Plant Pathol 102:257–263

    Article  Google Scholar 

  • Kim KS, Min JY, Dickman MB (2008) Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant Microbe Interact 21:605–612

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36

    Article  CAS  PubMed  Google Scholar 

  • Lyon GD, Goodman BA, Williamson B (2004) Botrytis cinerea perturbs redox processes as an attack strategy in plants. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: Biology, pathology and control. Springer, Dordrecht, pp 119–141

    Google Scholar 

  • Mansfield JW, Richardson A (1981) The ultrastructure of interactions between Botrytis species and broad bean leaves. Physiol Plant Pathol 19:41–48

    Article  Google Scholar 

  • Mansfield JW, Porter AEA, Smallman RV (1980) Dihydrowyerone derivatives as components of the furanoacetylenic phytoalexin response of tissues of Vicia faba. Phytochemistry 19:1057–1061

    Article  CAS  Google Scholar 

  • Manteau S, Abouna S, Lambert B, Legendre L (2003) Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol Ecol 43:359–366

    Article  CAS  PubMed  Google Scholar 

  • Marciano P, Di Lenna P, Magro P (1983) Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol Plant Pathol 22:339–345

    Article  CAS  Google Scholar 

  • Movahedi S, Heale JB (1990a) Purification and characterization of an aspartic proteinase secreted by Botrytis cinerea Pers ex. Pers in culture and in infected carrots. Physiol Mol Plant Pathol 36:289–302

    Article  CAS  Google Scholar 

  • Movahedi S, Heale JB (1990b) The roles of aspartic proteinase and endo-pectin lyase enzymes in the primary stages of infection and pathogenesis of various host tissues by different isolates of Botrytis cinerea Pers ex Pers. Physiol Mol Plant Pathol 36:303–324

    Article  CAS  Google Scholar 

  • Nakajima M, Suzuki J, Hosaka T, Hibi T, Akutsu K (2001) Functional analysis of an ATP-binding cassette transporter gene in Botrytis cinerea by gene disruption. J Gen Plant Pathol 67:212–214

    Article  CAS  Google Scholar 

  • Noda J, Brito N, González C (2010) The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Poinssot B, Vandelle E, Bentéjac M, Adrian M, Levis C, Brygoo Y, Garin J, Sicilia F, Coutos-Thévenot P, Pugin A (2003) The endopolygalacturonase 1 from Botrytis cinerea activates grapevine defense reactions unrelated to its enzymatic activity. Mol Plant Microbe Interact 16:553–564

    Article  CAS  PubMed  Google Scholar 

  • Reignault P, Mercier M, Bompeix G, Boccara M (1994) Pectin methylesterase from Botrytis cinerea: physiological, biochemical and immunochemical studies. Microbiology 140:3249–3255

    Article  CAS  Google Scholar 

  • Reino JL, Hernández-Galán R, Durán-Patrón R, Collado IG (2004) Virulence-toxin production relationship in isolates of the plant pathogenic fungus Botrytis cinerea. J Phytopathol 152:563–566

    Article  CAS  Google Scholar 

  • Reis H, Pfiffi S, Hahn M (2005) Molecular and functional characterization of a secreted lipase from Botrytis cinerea. Mol Plant Pathol 6:257–267

    Article  CAS  PubMed  Google Scholar 

  • Rha E, Park HJ, Kim MO, Chung YR, Lee CW, Kim JW (2001) Expression of exopolygalacturonases in Botrytis cinerea. FEMS Microbiol Lett 201:105–109

    Article  CAS  PubMed  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    Article  CAS  PubMed  Google Scholar 

  • Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring K-M, Siewers V, Tenberge KB, Tudzynski B, Tudzynski P (2004) Functional analysis of H2O2-generating systemis in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol Plant Pathol 5:17–27

    Article  CAS  PubMed  Google Scholar 

  • Rollins JA (2003) The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol Plant Microbe Interact 16:785–795

    Article  CAS  PubMed  Google Scholar 

  • Rossi FR, Gárriz A, Marina M, Romero FM, Gonzalez ME, Collado IG, Pieckenstain FL (2011) The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling. Mol Plant Microbe Interact 24:888–896

    Article  CAS  PubMed  Google Scholar 

  • Salinas J (1992) Function of cutinolytic enzymes in the infection of gerbera flowers by Botrytis cinerea. Ph.D. dissertation, University of Utrecht, Netherlands

  • Salinas J, Verhoeff K (1995) Microscopical studies of the infection of gerbera flowers by Botrytis cinerea. Eur J Plant Pathol 101:377–386

    Article  Google Scholar 

  • Sasaki I, Nagayama H (1994) β-glucosidase from Botrytis cinerea: its relation to the pathogenicity of this fungus. Biosci Biotechnol Biochem 58:616–620

    Article  CAS  Google Scholar 

  • Sasaki I, Nagayama H (1996) β-glucosidase of Botrytis cinerea: its involvement in the pathogenicity of this fungus. Biosci Biotechnol Biochem 60:54–56

    Article  CAS  Google Scholar 

  • Schaller A, Ryan CA (1996) Molecular cloning of a tomato leaf cDNA encoding an aspartic protease, a systemic wound response protein. Plant Mol Biol 31:1073–1077

    Article  CAS  PubMed  Google Scholar 

  • Schoonbeek H, Raaijmakers JM, De Waard MA (2002) Fungal ABC transporters and microbial interactions in natural environments. Mol Plant Microbe Interact 15:1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Schouten A, Tenberge KB, Vermeer J, Stewart J, Wagemakers L, Williamson B, van Kan JAL (2002a) Functional analysis of an extracellular catalase of Botrytis cinerea. Mol Plant Pathol 3:227–238

    Article  CAS  PubMed  Google Scholar 

  • Schouten A, Wagemakers L, Stefanato FL, van der Kaaij RM, van Kan JAL (2002b) Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Mol Microbiol 43:883–894

    Article  CAS  PubMed  Google Scholar 

  • Schouten A, van Baarlen P, van Kan JAL (2008) Phytotoxic Nep1-like proteins from the necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells. New Phytol 177:493–505

    CAS  PubMed  Google Scholar 

  • Segmüller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P (2008) NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant Microbe Interact 21:808–819

    Article  PubMed  Google Scholar 

  • Shlezinger N, Doron A, Sharon A (2011a) Apoptosis-like programmed cell death in the grey mould fungus Botrytis cinerea: genes and their role in pathogenicity. Biochem Soc Trans 39:1493–1498

    Article  CAS  PubMed  Google Scholar 

  • Shlezinger N, Minz A, Gur Y, Hatam I, Dagdas YF, Talbot NJ, Sharon A (2011b) Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection. PLoS Pathog 7:e1002185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siewers V, Viaud M, Jimenez-Teja D, Collado IG, Gronover CS, Pradier JM, Tudzynski B, Tudzynski P (2005) Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant Microbe Interact 18:602–612

    Article  CAS  PubMed  Google Scholar 

  • Staples RC, Mayer AM (1995) Putative virulence factors of Botrytis cinerea acting as a wound pathogen. FEMS Microbiol Lett 134:1–7

    Article  CAS  Google Scholar 

  • Stefanato FL, Abou-Mansour E, Buchala A, Kretschmer M, Mosbach A, Hahn M, Bochet CG, Métraux J-P, Schoonbeek H (2009) The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J 58:499–510

    Article  CAS  PubMed  Google Scholar 

  • Sutton JC, Rowell PM, James TDW (1984) Effects of leaf wax, wetness duration and temperature on infection of onion leaves by Botrytis squamosa. Phytoprotection 65:65–68

    Google Scholar 

  • Tani H, Koshino H, Sakuno E, Cutler HG, Nakajima H (2006) Botcinins E and F and botcinolide from Botrytis cinerea and structural revision of botcinolides. J Nat Prod 69:722–725

    Article  CAS  PubMed  Google Scholar 

  • ten Have A, Mulder W, Visser J, van Kan JAL (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interact 11:1009–1016

    Article  PubMed  Google Scholar 

  • ten Have A, Oude Breuil W, Wubben JP, Visser J, van Kan JAL (2001) Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol 33:97–105

    Article  PubMed  Google Scholar 

  • ten Have A, Tenberge KB, Benen JAE, Tudzynski P, Visser J, van Kan JAL (2002) The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens. In: Kempken F (ed) The Mycota, a comprehensive treatise on fungi as experimental systems for basic and applied research XI. Agricultural applications. Springer, Berlin, pp 341–358

    Google Scholar 

  • ten Have A, Dekkers E, Kay J, Phylip LH, van Kan JAL (2004) An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology 150:2475–2489

    Article  PubMed  Google Scholar 

  • ten Have A, Espino JJ, Dekkers E, Van Sluyter SC, Brito N, Kay J, González C, van Kan JAL (2010) The Botrytis cinerea aspartic proteinase family. Fungal Genet Biol 47:53–65

    Article  PubMed  Google Scholar 

  • Tenberge KB (2004) Morphology and cellular organization in Botrytis interactions with plants. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: Biology, pathology and control. Springer, Dordrecht, pp 67–84

    Google Scholar 

  • Tobias RB, Conway W, Sams C (1993) Polygalacturonase isozymes from Botrytis cinerea grown on apple pectin. Biochem Mol Biol Int 30:829–837

    CAS  PubMed  Google Scholar 

  • Urbanek H, Zalewska-Sobczak J (1984) Multiplicity of cell wall degrading glycosidic hydrolases produced by apple infecting Botrytis cinerea. J Phytopathol 110:261–271

    Article  CAS  Google Scholar 

  • Valette-Collet O, Cimerman A, Reinault P, Levis C, Boccara M (2003) Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Mol Plant Microbe Interact 16:360–367

    Article  CAS  PubMed  Google Scholar 

  • van Baarlen P, Woltering EJ, Staats M, van Kan JAL (2007) Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol Plant Pathol 8:41–54

    Article  Google Scholar 

  • van Kan JAL, van’t Klooster JW, Wagemakers CAM, Dees DCT, van der Vlugt-Bergmans CJB (1997) Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol Plant Microbe Interact 10:30–38

    Article  PubMed  Google Scholar 

  • van den Heuvel J, Waterreus LP (1985) Pectic enzymes associated with phosphate-stimulated infection of French bean leaves by Botrytis cinerea. Neth J Plant Pathol 91:253–264

    Article  Google Scholar 

  • van der Vlugt-Bergmans CJB, Wagemakers CAM, van Kan JAL (1997) Cloning and expression of the cutinase A gene of Botrytis cinerea. Mol Plant Microbe Interact 10:21–29

    Article  PubMed  Google Scholar 

  • Vandelle E, Poinssot B, Wendehenne D, Bentéjac M, Pugin A (2006) Integrated signaling network involving calcium, nitric oxide, and active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grapevine defenses. Mol Plant Microbe Interact 19:429–440

    Article  CAS  PubMed  Google Scholar 

  • Verhoeff K, Warren JM (1972) In vitro and in vivo production of cell wall degrading enzymes by Botrytis cinerea from tomato. Neth J Plant Pathol 78:179–185

    Article  CAS  Google Scholar 

  • Verhoeff K, Leeman M, van Peer R, Posthuma L, Schot N, van Eijk GW (1988) Changes in pH and the production of organic acids during colonization of tomato petioles by Botrytis cinerea. J Phytopathol 122:327–336

    Article  CAS  Google Scholar 

  • Vermeulen T, Schoonbeek H, De Waard MA (2001) The ABC transporter BcatrB from Botrytis cinerea is a determinant of the activity of the phenylpyrrole fungicide fludioxonil. Pest Manag Sci 57:393–402

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Yagen B, Mayer AM (1992) Cucurbitacins, ‘attack’ enzymes and laccase in Botrytis cinerea. Phytochemistry 32:61–65

    Article  CAS  Google Scholar 

  • Viterbo A, Staples RC, Yagen B, Mayer AM (1994) Selective mode of action of cucurbitacin in the inhibition of laccase formation in Botrytis cinerea. Phytochemistry 35:1137–1142

    Article  CAS  Google Scholar 

  • Williamson B, Duncan GH, Harrison JG, Harding LA, Elad Y, Zimand G (1995) Effect of humidity on infection of rose petals by dry-inoculated conidia of Botrytis cinerea. Mycol Res 99:1303–1310

    Article  Google Scholar 

  • Wubben JP, Mulder W, ten Have A, van Kan JAL, Visser J (1999) Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea. Appl Environ Microbiol 65:1596–1602

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Nakajima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, M., Akutsu, K. Virulence factors of Botrytis cinerea . J Gen Plant Pathol 80, 15–23 (2014). https://doi.org/10.1007/s10327-013-0492-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-013-0492-0

Keywords

Navigation