Skip to main content

Advertisement

Log in

Recent studies on biological control of plant diseases in Japan

  • REVIEW FOR THE 100TH ANNIVERSARY
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Microorganisms play an enormously important role in plant disease control. Research on biological control of plant pathogens has received major impetus and attracted many researchers during the past few decades due to the increased public concern on hazards associated with the use of synthetic pesticides. From research on utilizing specific antagonistic microorganisms, many effective biological control agents (BCAs) have been found and are increasingly implemented in integrated pest management strategies to control plant diseases. Here current research results on biological control against plant diseases carried out in Japan are reviewed by focusing on major categories of BCAs: fungi, bacteria and actinomycetes and attenuated viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad SJ, Baker R (1988) Implications of rhizosphere competence of Trichoderma harzianum. Can J Microbiol 34:229–234

    Article  Google Scholar 

  • Aino M (2007) New frontiers in the application of endophytic bacteria (in Japanese with English abstract). In: Hyakumachi M, Tsushima S (eds) New strategies in the application of biocontrol agents and new frontiers in biocontrol researches. Phytopathological Society of Japan, Tokyo, pp 92–100

    Google Scholar 

  • Aino M, Maekawa Y, Mayama S, Kato H (1997) Biocontrol of bacterial wilt of tomato by producing seedlings colonized with endophytic antagonistic pseudomonads. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria, present status and future prospects. Nakanishi Printing, Sapporo, pp 120–123

    Google Scholar 

  • Alabouvette C (1990) Biological control of Fusarium wilt pathogens in suppressive soils. In: Hornby D (ed) Biological control of soilborne plant pathogens. CAB International, Wallingford, pp 27–43

    Google Scholar 

  • Alabouvette C, Lemanceau P, Steinberg C (1993) Recent advances in the biological control of Fusarium wilts. Pestic Sci 37:365–373

    Article  Google Scholar 

  • Alabouvette C, Schippers B, Lemanceau P, Bakker PAHM (1998) Biological control of Fusarium wilts: toward development of commercial products. In: Boland GJ, Kuykendall LD (eds) Plant–microbe interactions and biological control. Marcel Dekker, New York, pp 15–36

    Google Scholar 

  • Alejo-Iturvide F, Márquez-Lucio MA, Morales-Ramírez I, Vázquez-Garcidueñas MS, Olalde-Portugal V (2008) Mycorrhizal protection of chili plants challenged by Phytophthora capsici. Eur J Plant Pathol 120:13–20

    Article  Google Scholar 

  • Alit-Susanta WGN, Takikawa Y (2006) Analysis of the gacS-gacA regulatory genes of spontaneous mutants of Pseudomonas fluorescens biocontrol strain PfG32R. J Gen Plant Pathol 72:159–167

    Article  CAS  Google Scholar 

  • Al-Rawahi AK, Hancock JG (1997) Rhizosphere competence of Pythium oligandrum. Phytopathology 87:951–959

    Article  CAS  PubMed  Google Scholar 

  • Alvindia DG, Natsuaki KT (2009) Biocontrol activities of Bacillus amyloliquefaciens DGA14 isolated from banana fruit surface against banana crown rot-causing pathogens. Crop Prot 28:236–242

    Article  Google Scholar 

  • Anonymous (1988) Control of melon mosaic disease by attenuated virus. In: Shizuoka Prefect Agric Fish Dep Rep no. 1765. Shizuoka Pref Gov Shizuoka, pp 1–12

  • Aoki M, Uehara K, Tsuji K, Ono K, Iijima M (1993) Large-scale culture and preservation methods of Pseudomonas cepacia B5 for biological control against bacterial wilt disease. Biosci Biotechnol Biochem 57:668–669

    Article  CAS  Google Scholar 

  • Arai T (1995) What are actinomycetes? In: Miyadoh S, Hamada M, Hotta K, Kudo T, Seino A, Vobis G, Yokota A (eds) Atlas of actinomycetes. Asakura Publishing, Tokyo, pp 176–179

    Google Scholar 

  • Arie T, Kunimi H (2010) Current state and future prospect for microbial-pesticides (in Japanese). Bio Ind 27:7–17

    CAS  Google Scholar 

  • Arie T, Namba S, Yamashita S, Doi Y, Kijima T (1987) Biological control of Fusarium wilt of bottle gourd by mix-cropping with Welsh onion or Chinese chive inoculated with Pseudomonas gladioli (in Japanese with English abstract). Ann Phytopath Soc Japan 53:531–539

    Article  Google Scholar 

  • Arwiyanto T, Goto M, Tsuyumu S, Takikawa Y (1994) Biological control of bacterial wilt of tomato by an avirulent strain of Pseudomonas solanacearum isolated from Strelitzia reginae. Ann Phytopath Soc Japan 60:421–430

    Article  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baayen RP, O’Donnell K, Bonants PJM, Cigelnik E, Kroon LPNM, Roebroeck EJA, Waalwijk C (2000) Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90:891–900

    Article  CAS  PubMed  Google Scholar 

  • Baniasadi F, Shahidi Bonjar GH, Baghizadeh A, Nik AK, Jorjandi M, Aghighi S, Rashid Farokhi P (2009) Biological control of Sclerotinia sclerotiorum, causal agent of sunflower head and stem rot disease, by use of soil borne actinomycetes isolates. Am J Agric Biol Sci 4:146–151

    Article  Google Scholar 

  • Benhamou N, Rey P, Chérif M, Hockenhull J, Tirilly Y (1997) Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology 87:108–122

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N, Rey P, Picard K, Tirilly Y (1999) Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology 89:506–517

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Zachow C, Cardinale M, Müller H (2011) Ecology and human pathogenicity of plant-associated bacteria. In: Ehlers RU (ed) Regulation of biological control agents. Springer, Dordrecht, pp 175–189

    Chapter  Google Scholar 

  • Boukaew S, Chuenchit S, Petcharat V (2011) Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. Biocontrol 56:365–374

    Article  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2004) Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39:425–430

    Article  CAS  PubMed  Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci 100:14555–14561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2006) Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 286:209–217

    Article  CAS  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2009) Interaction between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). App Soil Ecol 41:336–341

    Article  Google Scholar 

  • Chang YC, Chang YC, Baker R, Kleifeld O, Chet I (1986) Increased growth of plants in presence of the biological control agent Trichoderma harzianum. Plant Dis 70:145–148

    Article  Google Scholar 

  • Chikuo Y (1993) Incorporation of antagonistic Pseudomonas spp. to pelleted seeds to control sugar beet damping-off (in Japanese). Plant Prot 47:130–133

    Google Scholar 

  • Conn VM, Walker AR, Franco CMM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant–Microbe Interact 21:208–218

    Article  CAS  PubMed  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopath 31:53–80

    Article  CAS  Google Scholar 

  • Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366

    Article  Google Scholar 

  • Costa AS, Müller GW (1980) Tristeza control by cross protection: a U.S.–Brazil cooperative success. Plant Dis 64:538–541

    Article  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Cal A, Garcia-Lepe R, Melgarejo P (2000) Induced resistance by Penicillium oxalicum against Fusarium oxysporum f. sp. lycopersici: histological studies of infected and induced tomato stems. Phytopathology 90:260–268

    Article  PubMed  Google Scholar 

  • Dewan MM, Sivasithamparam K (1989) Behavior of a plant growth-promoting sterile fungus on agar and roots of rye-grass and wheat. Mycol Res 93:161–166

    Article  Google Scholar 

  • Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538

    Article  CAS  PubMed  Google Scholar 

  • Edgecomb DW, Yamanaka S (2005) Development of IMPRESSION WP, Bacillus subtilis, strain QSR 713, a biofungicide for fruit and vegetables. In: Tsuchiya K, Tsushima S (eds) Function of microorganisms as a biocontrol agent and its extension. Phytopathological Society of Japan, Tokyo, pp 47–54

    Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012a) Induction of systemic resistance against Cucumber mosaic virus by Penicillium simplicissimum GP17-2 in Arabidopsis and tobacco. Plant Pathol 61:964–976

    Article  CAS  Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012b) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants. Plant Soil 361:397–409

    Article  CAS  Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Ozaki K, Hyakumachi M (2013) Induction of systemic resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathol J 29:193–200

    Article  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GESJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    Article  CAS  PubMed  Google Scholar 

  • Enya J, Koitabashi M, Shinohara H, Yoshida S, Tsukiboshi T, Negishi H, Suyama K, Tsushima S (2007) Phylogenetic diversities of dominant culturable Bacillus, Pseudomonas and Pantoea species on tomato leaves and their possibility as biological control agents. J Phytopathol 155:446–453

    Article  CAS  Google Scholar 

  • Folimonova SY (2013) Developing an understanding of cross-protection by Citrus tristeza virus. Front Microbiol 4:1–9

    Article  CAS  Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502

    Article  Google Scholar 

  • Fukui R (2003) Suppression of soilborne plant pathogens through community evolution of soil microorganisms. Microbes Environ 18:1–9

    Article  Google Scholar 

  • Fukui R, Fukui H, Alvarez AM (1999) Comparisons of single versus multiple bacterial species on biological control of Anthurium blight. Phytopathology 89:366–373

    Article  CAS  PubMed  Google Scholar 

  • Furuya N, Okamoto T, Kori Y, Matsuyama N, Wakimoto S (1991) Control of bacterial seedling rot of rice by avirulent strains of Pseudomonas glumae. Ann Phytopath Soc Japan 57:371–376

    Article  Google Scholar 

  • Furuya N, Yamasaki S, Nishioka M, Shiraishi I, Iiyama K, Matsuyama N (1997) Antimicrobial activities of pseudomonads against plant pathogenic organisms and efficacy of Pseudomonas aeruginosa ATCC7700 against bacterial wilt of tomato. Ann Phytopathol Soc Jpn 63:417–424

    Article  Google Scholar 

  • Furuya S, Mochizuki M, Aoki Y, Kobayashi H, Takayanagi T, Shimizu M, Suzuki S (2011) Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Sci Technol 21:705–720

    Article  Google Scholar 

  • Gal-On A, Shiboleth YM (2006) Cross-protection. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, Berlin, pp 261–288

    Chapter  Google Scholar 

  • Garmendia I, Aguirreolea J, Goicoechea N (2006) Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae. Biocontrol 51:293–310

    Article  CAS  Google Scholar 

  • Getha K, Vikineswary S (2002) Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f.sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process. J Ind Microbiol Biotechnol 28:303–310

    Article  CAS  PubMed  Google Scholar 

  • Gomes RC, Semêdo LTAS, Soares RMA, Alviano CS, Linhares LF, Coelho RRR (2000) Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Lett Appl Microbiol 30:146–150

    Article  CAS  PubMed  Google Scholar 

  • Goto T, Nemoto M (1971) Studies on control of plant virus diseases by interference of attenuated virus-selection of TMV attenuated strain and influence on various plants inoculated with the attenuated strain (in Japanese). Res Bull Hokkaido Natl Agr Exp Stn 99:67–76

    Google Scholar 

  • Goto T, Iizuka N, Komochi S (1984) Selection and utilization of an attenuated isolate of pepper strain of tobacco mosaic virus (in Japanese). Ann Phytopath Soc Japan 50:221–228

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species–opportunistic avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hase S, Pieterse C, van Loon LC (2001) Mechanisms of rhizobacteria-mediated induced systemic resistance (in Japanese with English abstract). Proc PSJ Plant–Microbe Interact Sympo 37:15–24

    Google Scholar 

  • Hase S, Shimizu A, Nakaho K, Takenaka S, Takahashi H (2006) Induction of transient ethylene and reduction in severity of tomato bacterial wilt by Pythium oligandrum. Plant Pathol 55:537–543

    Article  CAS  Google Scholar 

  • Hase S, Takahashi S, Takenaka S, Nakaho K, Arie T, Seo S, Ohashi Y, Takahashi H (2008) Involvement of jasmonic acid signaling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathol 57:870–876

    Article  CAS  Google Scholar 

  • Hasegawa S, Meguro A, Shimizu M, Nishimura T, Kunoh H (2006) Endophytic actinomycetes and their interactions with host plants. Actinomycetologica 20:72–81

    Article  CAS  Google Scholar 

  • Hashimoto N, Yoshikawa M (1992) Suppression of Phytophthora root rot of Aralia elata by fluorescent Pseudomonas (in Japanese with English abstract). Soil Microorg 40:17–21

    Google Scholar 

  • Hashimoto S, Kawamura I, Nakajima M, Akutsu K (2012) Suppressive effects of some isolates of Bacillus subtilis var. natto against gray mold of strawberry (in Japanese with English abstract). Jpn J Phytopathol 78:104–107

    Article  Google Scholar 

  • He Y, Suzuki S, Aono T, Oyaizu H (2004) Importance of 2,4-DAPG in the biological control of brown patch by Pseudomonas fluorescens HP72 and newly identified genes involved in 2,4-DAPG biosynthesis. Soil Sci Plant Nutr 50:1287–1293

    Article  CAS  Google Scholar 

  • Hirayae K, Hirata A, Akutsu K, Hara S, Havukkala I, Nishizawa Y, Hibi T (1996) In vitro growth inhibition of plant pathogenic fungi, Botrytis spp., by Escherichia coli transformed with a chitinolytic enzyme gene from a marine bacterium, Alteromonas sp. strain 79401. Ann Phytopathol Soc Jpn 62:30–36

    Article  CAS  Google Scholar 

  • Homma Y (1993) Productivity of antagonistic substances by Pseudomonas spp. (in Japanese with English abstract). Soil Microorg 41:7–15

    Google Scholar 

  • Homma Y, Suzui T (1989) Role of antibiotic production in suppression of radish damping-off by seed bacterization with Pseudomonas cepacia. Ann Phytopath Soc Japan 55:643–652

    Article  CAS  Google Scholar 

  • Honda N, Kawakubo Y (1998) Control of Fusarium basal rot of rakkyo by non-pathogenic Fusarium moniliforme and Fusarium oxysporum. Soil Microorg 51:13–18

    Google Scholar 

  • Honda N, Hirai M, Ano T, Shoda M (1999) Control of tomato damping-off caused by Rhizoctonia solani by the heterotrophic nitrifier Alcaligenes faecalis and its product, hydroxylamine. Ann Phytopathol Soc Jpn 65:153–162

    Article  Google Scholar 

  • Hondo D, Hase S, Kanayama Y, Yoshikawa N, Takenaka S, Takahashi H (2007) The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Mol Plant–Microbe Interact 20:72–81

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi H, Muslim A, Suzuki T, Hyakumachi M (2007) Fusarium equiseti GF191 as an effective biocontrol agent against Fusarium crown and root rot of tomato in rock wool systems. Crop Prot 26:1514–1523

    Article  Google Scholar 

  • Horinouchi H, Katsuyama N, Taguchi Y, Hyakumachi M (2008) Control of Fusarium crown and root rot of tomato in a soil system by combination of a plant growth promoting fungus, Fusarium equiseti GF191, and biodegradable pots. Crop Prot 27:859–864

    Article  Google Scholar 

  • Horinouchi H, Muslim A, Hyakumachi M (2010) Biocontrol of Fusarium wilt of spinach by the plant growth promoting fungus Fusarium equiseti GF183. J Plant Pathol 92:249–254

    Google Scholar 

  • Horinouchi H, Watanabe H, Taguchi Y, Muslim A, Hyakumachi M (2011) Biological control of Fusarium wilt of tomato with Fusarium equiseti GF191 in both rock wool and soil systems. Biocontrol 56:915–923

    Article  Google Scholar 

  • Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M (2007) The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol 48:1724–1736

    Article  CAS  PubMed  Google Scholar 

  • Hossain MM, Sultana F, Kubota M, Hyakumachi M (2008) Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant Soil 304:227–239

    Article  CAS  Google Scholar 

  • Hu JL, Lin XG, Wang JH, Shen WS, Wu S, Peng SP, Mao TT (2010) Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber Fusarium wilt in greenhouse soils. Pedosphere 20:586–593

    Article  CAS  Google Scholar 

  • Hyakumachi M (1994) Plant growth-promoting fungi from turfgrass rhizosphere with potential for disease suppression. Soil Microorg 44:53–68

    Google Scholar 

  • Hyakumachi M (1998) Systemic resistance in plants induced by beneficial rhizosphere microorganisms (in Japanese). J Pestic Sci 23:422–426

    Article  CAS  Google Scholar 

  • Hyakumachi M, Kubota M (2004) Biological control of plant diseases by plant growth promoting fungi. In: Kobayashi K, Gasoni L, Terashima H (eds) Biological control of soilborne plant diseases. O.C.S. Book Shop S.R.I, Buenos Aires, pp 87–123

    Google Scholar 

  • Hyakumachi M, Nishimura M, Arakawa T, Asano S, Yoshida S, Tsushima S, Takahashi H (2013) Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato. Microbes Environ 28:128–134

    Article  PubMed  Google Scholar 

  • Ieki H, Yamaguchi A, Kano T, Koizumi M, Iwanami T (1997) Control of stem pitting disease caused by citrus tristeza virus using protective mild strains in navel orange. Ann Phytopathol Soc Jpn 63:170–175

    Article  Google Scholar 

  • Ikeda S, Toyoda H, Matsuda Y, Kurokawa M, Tamai T, Yoshida K, Kami C, Ikemoto T, Enomoto M, Shiraishi K, Miyamoto S, Hanaoka M, Ouchi S (1996) Cloning of a chitinase gene chiSH1 cloned from gram-positive bacterium Kurthia zopfii and control of powdery mildew of barley. Ann Phytopathol Soc Jpn 62:11–16

    Article  CAS  Google Scholar 

  • Ikeda S, Okubo T, Anda M, Nakashita H, Yasuda M, Sato S, Kaneko T, Tabata S, Eda S, Momiyama A, Terasawa K, Mitsui H, Minamisawa K (2010) Community- and genome-based views of plant-associated bacteria: plant-bacterial interactions in soybean and rice. Plant Cell Physiol 51:1398–1410

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S, Shimizu A, Shimizu M, Takahashi H, Takenaka S (2012) Biocontrol of black scurf on potato by seed tuber treatment with Pythium oligandrum. Biol Control 60:297–304

    Article  Google Scholar 

  • Inderiati S, Franco CMM (2008) Isolation and identification of endophytic actinomycetes and their antifungal activity. J Biotechnol Res Trop Reg 1:1–6

    Google Scholar 

  • Ishikuri S, Uchino H, Kanzawa K (1992) Isolation of Pseudomonas cepacia D-202: an available biocontrol agents to the storage rot of sugar beet. Ann Phytopath Soc Japan 58:456–460

    Article  Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwamoto Y, Aino M (2007) Effect of Pseudomonas fluorescens FPH9601 inoculation on the incidence of soil borne-diseases of tomato (in Japanese with English abstract). Soil Microorg 61:11–16

    Google Scholar 

  • Iyozumi H, Komagata T, Hirayae K, Tsuchiya K, Hibi T, Akutsu K (1996) Biological control of cyclamen gray mold (Botrytis cinerea) by Serratia marcescens B2. Ann Phytopathol Soc Jpn 62:559–565

    Article  Google Scholar 

  • Jones CR, Samac DA (1996) Biological control of fungi causing alfalfa seedling damping-off with a disease-suppressive strain of Streptomyces. Biol Control 7:196–204

    Article  Google Scholar 

  • Kageyama K, Nelson EB (2003) Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl Eviron Microbiol 69:1114–1120

    Article  CAS  Google Scholar 

  • Kajihara H, Kameya-Iwaki M, Oonaga M, Kimura I, Sumida Y, Ooi Y, Ito S (2008) Field studies on cross-protection against Japanese yam mosaic virus in Chinese yam (Dioscorea opposita) with an attenuated strain of the virus. J Phytopathol 156:75–78

    Article  Google Scholar 

  • Katsube K, Akasaka Y (1997) Control of Fusarium wilt of spinach by transplanting seedlings pretreated with non-pathogenic Fusarium oxysporum (in Japanese with English abstract). Ann Phytopathol Soc Jpn 63:389–394

    Article  Google Scholar 

  • Kawaguchi A (2012) Biological control for grapevine crown gall. In: Szabo PV, Shojania J (eds) Grapevine: varieties, cultivation. Nova Science Publishers, NY, pp 153–167

    Google Scholar 

  • Kawaguchi A (2013) Biological control of crown gall on grapevine and root colonization by nonpathogenic Rhizobium vitis strain ARK-1. Microbes Environ 28:306–311

    Article  PubMed  Google Scholar 

  • Kawaguchi A, Inoue K, Nasu H (2007) Biological control of grapevine crown gall by nonpathogenic Agrobacterium vitis VAR03-1. J Gen Plant Pathol 73:133–138

    Article  Google Scholar 

  • Kawamura Y, Hase S, Takenaka S, Kanayama Y, Yoshioka H, Kamoun S, Takahashi H (2009) INF1 elicitin activates jasmonic acid- and ethylene-mediated signalling pathways and induces resistance to bacterial wilt disease in tomato. J Phytopathol 157:287–297

    Article  CAS  Google Scholar 

  • Kawane F (2000) Property of microbial pesticide (in Japanese). Plant Prot 54:342–345

    Google Scholar 

  • Kita N, Ohya T, Uekusa H, Nomura K, Manago M, Shoda M (2005) Biological control of damping-off of tomato seedlings and cucumber Phomopsis root rot by Bacillus subtilis RB14-C. Jpn Agric Res Q 39:109–114

    Article  CAS  Google Scholar 

  • Kobayashi YO, Kobayashi A, Maeda M, Takenaka S (2012) Isolation of antagonistic Streptomyces sp. against a potato scab pathogen from a field cultivated with wild oat. J Gen Plant Pathol 78:62–72

    Article  CAS  Google Scholar 

  • Koike N, Hyakumachi M, Kageyama K, Tsuyumu S, Doke N (2001) Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignifications and superoxide generation. Eur J Plant Pathol 107:523–533

    Article  CAS  Google Scholar 

  • Kojima H, Hossain MM, Kubota M, Hyakumachi M (2013) Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by the plant growth-promoting fungi Fusarium equiseti GF19-1. J Oleo Sci 62:415–426

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Kasai K, Yamashita K, Ishitani M (2007) Selection and discrimination of an attenuated strain of Chinese yam necrotic mosaic virus for cross-protection. J Gen Plant Pathol 73:152–155

    Article  CAS  Google Scholar 

  • Kondoh M, Hirai M, Shoda M (2001) Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis RB14-C and flutolanil. J Biosci Bioeng 91:173–177

    CAS  PubMed  Google Scholar 

  • Kosaka Y, Fukunishi T (1993) Attenuated isolates of soybean mosaic virus derived at a low temperature. Plant Dis 77:882–886

    Article  Google Scholar 

  • Kosaka Y, Ryang B-S, Kobori T, Shiomi H, Yasuhara H, Kataoka M (2006) Effectiveness of an attenuated Zucchini yellow mosaic virus isolate for cross-protecting cucumber. Plant Dis 90:67–72

    Article  CAS  Google Scholar 

  • Kyeremeh AG, Kikumoto T, Chuang D, Gunji Y, Takahara Y (1999) Isolation and evaluation of copper- and bactericide-resistant mutants of putative biocontrol agents of soft rot of Chinese cabbage. Ann Phytopathol Soc Jpn 65:171–176

    Article  Google Scholar 

  • Larkin RP, Hopkins DL, Martin FN (1996) Suppression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology 86:812–819

    Article  Google Scholar 

  • Lee SO, Choi GJ, Choi YH, Jang KS, Park D-J, Kim C-J, Kim J-C (2008) Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol 18:1741–1746

    CAS  PubMed  Google Scholar 

  • Lewis K, Whipps JM, Cooke RC (1989) Mechanisms of biological disease control with special reference to the case study of Pythium oligandrum as an antagonist. In: Whipps JM, Lumsden RD (eds) Biotechnology of fungi for improving plant growth. Cambridge University Press, Cambridge, pp 191–217

    Google Scholar 

  • Li Y, Yanagi A, Miyawaki Y, Okada T, Matsubara Y (2010) Disease tolerance and changes in antioxidative abilities in mycorrhizal strawberry plants. J Japan Soc Hort Sci 79:174–178

    Article  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV, Davis EW II, Lim CK, Shaffer BT, Elbourne LDH et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maekawa Y (2002) New microbial pesticide/plant growth regulator: Pseudomonas fluorescens agent “SERUNAE GENKI” (in Japanese). Plant Prot 56:363–366

    Google Scholar 

  • Makino T (1986) Biological control of crown gall by Agrobacterium radiobacter strain 84 (in Japanese). Plant Prot 40:540–546

    Google Scholar 

  • Mandeel Q, Baker R (1991) Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 81:462–469

    Article  Google Scholar 

  • Martin FN, Hancock JG (1987) The use of Pythium oligandrum for biological control of preemergence damping-off caused by P. ultimum. Phytopathology 77:1013–1020

    Article  Google Scholar 

  • Masunaka A, Nakaho K, Sakai M, Takahashi H, Takenaka S (2009) Visualization of Ralstonia solanacearum cells during biocontrol of bacterial wilt disease in tomato with Pythium oligandrum. J Gen Plant Pathol 75:281–287

    Article  Google Scholar 

  • Masunaka A, Sekiguchi H, Takahashi H, Takenaka S (2010) Distribution and expression of elicitin-like protein genes of the biocontrol agent Pythium oligandrum. J Phytopathol 158:417–426

    Article  CAS  Google Scholar 

  • Matsubara Y (1999) Characteristics of arbuscular mycorrhizal fungal infection in dimorphic exodermis of feeder roots in asparagus seedlings. J Japan Soc Hort Sci 68:1149–1151

    Article  Google Scholar 

  • Matsubara Y (2011) Tolerance to Fusarium wilt and changes in antioxidative ability and free amino acid content in mycorrhizal strawberry plants. In: Husaini AM, Mercado JA (eds) Genomics, transgenics, molecular breeding and biotechnology of strawberry. Global Science Books, Isleworth, pp 126–131

    Google Scholar 

  • Matsubara Y, Tamura H, Harada T (1995) Growth enhancement and verticillium wilt control by vesicular-arbuscular mycorrhizal fungus inoculation in eggplant. J Japan Soc Hort Sci 64:555–561

    Article  Google Scholar 

  • Matsubara Y, Hasegawa N, Ohba N (2003) Relation between fiber and pectic substances in root tissue and tolerance to fusarium root rot in asparagus plants infected with arbuscular mycorrhizal fungus. J Japan Soc Hort Sci 72:275–280

    Article  CAS  Google Scholar 

  • Maya MA, Matsubara Y (2013) Tolerance to Fusarium wilt and anthracnose diseases and changes of antioxidative activity in mycorrhizal cyclamen. Crop Prot 47:41–48

    Article  CAS  Google Scholar 

  • McKinney HH (1929) Mosaic diseases in the Canary Islands, West Africa and Gibraltar. J Agric Res 39:557–578

    Google Scholar 

  • McQuilken MP, Whipps JM, Cooke RC (1990) Control of damping-off in cress and sugar-beet by commercial seed-coating with Pythium oligandrum. Plant Pathol 39:452–462

    Article  Google Scholar 

  • Meera MS, Shivanna MB, Kageyama K, Hyakumachi M (1994) Plant growth promoting fungi from zoysiagrass rhizosphere as potential inducers of systemic resistance in cucumbers. Phytopathology 84:1399–1406

    Article  Google Scholar 

  • Meera MS, Shivanna MB, Kageyama K, Hyakumachi M (1995) Persistence of induced systemic resistance in cucumber in relation to root colonization by plant growth promoting fungal isolates. Crop Prot 14:123–130

    Article  Google Scholar 

  • Meguro A, Hasegawa S, Shimizu M, Nishimura T, Kunoh H (2004) Induction of disease resistance in tissue-cultured seedlings of mountain laurel after treatment with Streptomyces padanus AOK-30. Actinomycetologica 18:48–53

    Article  Google Scholar 

  • Meguro A, Toyoda K, Ogiyama H, Hasegawa S, Nishimura T, Kunoh H, Shiraishi T (2012) Genes expressed in tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) with colonizing Streptomyces padanus AOK30. J Gen Plant Pathol 78:303–310

    Article  CAS  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa H (2000) Biocontrol of bacterial seedling blight of rice caused by Burkholderia gladioli using with its avirulent isolate (in Japanese with English abstract). Jpn J Phytopathol 66:232–238

    Article  CAS  Google Scholar 

  • Mizumoto S, Hirai M, Shoda M (2007) Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol 75:1267–1274

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki M, Yamamoto S, Aoki Y, Suzuki S (2012) Isolation and characterization of Bacillus amyloliquefaciens S13-3 as a biological control agent for anthracnose caused by Colletotrichum gloeosporioides. Biocontrol Sci Technol 22:697–709

    Article  Google Scholar 

  • Morohoshi T, Nakamura Y, Yamazaki G, Ishida A, Kato N, Ikeda T (2007) The plant pathogen Pantoea ananatis produce N-acylhomoserine lactone and causes center rot disease of onion by quorum sensing. J Bacteriol 189:8333–8338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morohoshi T, Someya N, Ikeda T (2009) Novel N-acylhomoserine lactone-degrading bacteria isolated from the leaf surface of Solanum tuberosum and their quorum-quenching properties. Biosci Biotechnol Biochem 73:2124–2127

    Article  CAS  PubMed  Google Scholar 

  • Morohoshi T, Wang WZ, Suto T, Saito Y, Ito S, Someya N, Ikeda T (2013) Phenazine antibiotic production and antifungal activity are regulated by multiple quorum-sensing systems in Pseudomonas chlororaphis subsp. aurantiaca StFRB508. J Biosci Bioeng 116:580–584

    Article  CAS  PubMed  Google Scholar 

  • Motoyoshi F, Nishiguchi M (1988) Control of virus diseases by attenuated virus strains: comparison between attenuated strains of cucumber green mottle mosaic virus and tobacco mosaic virus. Gamma Field Symp Inst Radiat Breed Nat Inst Agrobiol Resour 27:91–109

    Google Scholar 

  • Mulya K, Watanabe M, Goto M, Takikawa Y, Tsuyumu S (1996) Suppression of bacterial wilt disease of tomato root-dipping with Pseudomonas fluorescens PfG32—the role of antibiotic substances and siderophore production-. Ann Phytopathol Soc Jpn 62:134–140

    Article  CAS  Google Scholar 

  • Murakami K, Kanzaki K, Okada K, Matsumoto S, Oyaizu H (1997) Biological control of Rhizoconia solani AG2-2 IIIB on creeping bentgrass using an antifungal Pseudomonas fluorescens HP72 and its monitoring in fields. Ann Phytopathol Soc Jpn 63:437–444

    Article  Google Scholar 

  • Nagai Y (1987) Production of C-1421, an attenuated mutant of pepper strain of tobacco mosaic virus. Ann Phytopath Soc Japan 53:168–174

    Article  Google Scholar 

  • Nahiyan ASM, Matsubara Y (2012) Tolerance to Fusarium root rot and changes in antioxidative ability in mycorrhizal asparagus plants. Hort Sci 47:356–360

    CAS  Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334–4339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakazono-Nagaoka E, Takahashi T, Shimizu T, Kosaka Y, Natsuaki T, Omura T, Sasaya T (2009) Cross-protection against Bean yellow mosaic virus (BYMV) and Clover yellow vein virus by attenuated BYMV isolate M11. Phytopathology 99:251–257

    Article  CAS  PubMed  Google Scholar 

  • Narisawa K, Tokumasu S, Hashiba T (1998) Suppression of clubroot formation in Chinese cabbage by the root endophytic fungus, Heteroconium chatospira. Plant Pathol 47:206–210

    Article  Google Scholar 

  • Nishiguchi M, Kobayashi K (2011) Attenuated plant viruses: preventing virus diseases and understanding the molecular mechanism. J Gen Plant Pathol 77:221–229

    Article  Google Scholar 

  • Nishijima T, Toyota K, Mochizuki M (2005) Predominant culturable Bacillus species in Japanese arable soils and their potential as biocontrol agents. Microbes Environ 20:61–68

    Article  Google Scholar 

  • Numata S, Ui S, Tomiyama M, Hasebe A, Nakajima M, Akutsu K (2004) Cloning of various promoters for foreign gene expression in Erwinia ananas. J Gen Plant Pathol 70:69–73

    Article  CAS  Google Scholar 

  • Ogai R, Kanda-Hojo A, Tsuda S (2013) An attenuated isolate of Pepper mild mottle virus for cross protection of cultivated green pepper (Capsicum annuum L.) carrying the L 3 resistance gene. Crop Prot 54:29–34

    Article  CAS  Google Scholar 

  • Ogawa K, Komada H (1984) Biological control of Fusarium wilt of sweet potato by non-pathogenic Fusarium oxysporum (in Japanese). Ann Phytopath Soc Japan 50:1–9

    Article  Google Scholar 

  • Ogawa K, Komada H (1986) Induction of systemic resistance against Fusarium wilt of sweet potato by non-pathogenic Fusarium oxysporum (in Japanese). Ann Phytopath Soc Japan 52:15–21

    Article  Google Scholar 

  • Ohno M, Kataoka S, Numata S, Yamamoto-Tamura K, Fujii T, Nakajima M, Akutsu K, Hasebe A (2011) Biological control of Rhizoctonia damping-off of cucumber by a transformed Pseudomonas putida strain expressing a chitinase from a marine bacterium. Jpn Agric Res Q 45:91–98

    Article  CAS  Google Scholar 

  • Okada T, Matsubara Y (2012a) Tolerance to Fusarium root rot and the changes in free amino acid contents in mycorrhizal asparagus plants. HortSci 47:751–754

    CAS  Google Scholar 

  • Okada T, Matsubara Y (2012b) Influence of arbuscular mycorrhizal fungi and sodium chloride on Fusarium root rot and antioxidative abilities in asparagus plants. J Japan Soc Hort Sci 81:257–262

    Article  CAS  Google Scholar 

  • Okamoto H, Sato M, Sato Z, Isaka M (1998) Biocontrol of Phytophthora capsici by Serratia marcescens F-1-1 and analysis of biocontrol mechanisms using transposon-insertion mutants. Ann Phytopathol Soc Jpn 64:287–293

    Article  CAS  Google Scholar 

  • Okamoto H, Sato M, Miyata Y, Yoshikawa M, Isaka M (2000) Biocontrol of Phytophthora root rot of angelica trees by Enterobacter cloacae and Serratia ficaria strains. J Gen Plant Pathol 66:86–94

    Article  Google Scholar 

  • Olivain C, Humbert C, Nahalkova J, Fatehi J, L’Haridon F, Alabouvette C (2006) Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately in the soil. Appl Environ Microbiol 72:1523–1531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oshima N (1981) Control of tomato mosaic disease by attenuated virus. Jpn Agric Res Q 14:222–228

    Google Scholar 

  • Oshiman K (2000) Sodium alginate as an adjuvant of an antagonistic bacterium, Pseudomonas fluorescens strain A11RN, to enhance biocontrol of turfgrass snow mold caused by Typhula ishikariensis. J Gen Plant Pathol 66:258–263

    Article  CAS  Google Scholar 

  • Oshiman K, Azuma M, Shigemitsu H, Kunoh H (1996) Studies on the turfgrass mold caused by Typhula ishikariensis III. Suppression of hyphal growth of Typhula ishikariensis by phenazine-1-carboxylic acid produced by Pseudomonas fluorescens (in Japanese with English summary). J Jpn Soc Turfgrass Sci 24:129–138

    Google Scholar 

  • Ozgonen H, Erkilic A (2007) Growth enhancement and Phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Prot 26:1682–1688

    Article  Google Scholar 

  • Picard K, Ponchet M, Blein J-P, Rey P, Tirilly Y, Benhamou N (2000) Oligandrin. A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiol 124:379–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Richter J, Baltruschat H, Kabrodt K, Schellenberg I (2011) Impact of arbuscular mycorrhiza on the St. John’s wort (Hypericum perforatum) wilt disease induced by Colletotricuhum gloeosporioides. J Plant Dis Prot 118:109–118

    Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant–Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Ryang B-S, Katagiri N, Yasuhara H, Kosaka Y (2010) Diffusion of a registered plant virus vaccine (in Japanese). Plant Prot 64:44–47

    Google Scholar 

  • Sabaratnam S, Traquair JA (2002) Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23:245–253

    Article  CAS  Google Scholar 

  • Salaman RN (1933) Protective inoculation against a plant virus. Nature 131:468

    Article  Google Scholar 

  • Saldajeno MGB, Hyakumachi M (2011a) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. Ann Appl Biol 159:28–40

    Article  Google Scholar 

  • Saldajeno MGB, Hyakumachi M (2011b) Arbuscular mycorrhizal interactions with rhizobacteria or saprotrophic fungi and its implications to biological control of plant diseases. In: Fulton SM (ed) Mycorrhizal fungi. Nova Science Publishers Inc, New York, pp 187–212

    Google Scholar 

  • Saldajeno MGB, Chandanie WA, Kubota M, Hyakumachi M (2008) Effect of interactions of arbuscular mycorrhizal fungi and beneficial saprophytic mycoflora on plant growth and disease suppression. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: Sustainable agriculture and forestry. Springer, Berlin, pp 211–226

    Google Scholar 

  • Sasaki A (1974) Studies on Hassaku dwarf. Spec Bull Fruit Tree Exp Stn Hiroshima Pref 2:1–106

    CAS  Google Scholar 

  • Sayama H (1996) Viral resistant tomato seedling production using attenuated Cucumber mosaic virus (in Japanese). Plant Prot 50:20–25

    Google Scholar 

  • Sayama H, Sato T, Kominato M, Natsuaki T, Kaper JM (1993) Field testing of a satellite-containing attenuated strain of cucumber mosaic virus for tomato protection in Japan. Phytopathology 83:405–410

    Article  CAS  Google Scholar 

  • Sayama M, Uchino H, Kanzawa K, Homma Y (1994) Suppression of rhizomania of sugar beet by bacterization with a strain of rhizobacteria (in Japanese with English summary). Proc Jpn Soc Sugar Beet Technol 36:202–209

    Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M (2007) New frontiers in the application of endophytic actinomycetes (in Japanese with English abstract). In: Hyakumachi M, Tsushima S (eds) New strategies in the application of biocontrol agents and new frontiers in biocontrol researches. Phytopathol Soc Jpn, Tokyo, pp 82–91

    Google Scholar 

  • Shimizu M (2011) Endophytic actinomycetes: Biocontrol agents and growth promotors. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 201–220

    Google Scholar 

  • Shimizu B, Fujimori A, Miyagawa H, Ueno T, Watanabe K, Ogawa K (2000) Resistance against Fusarium wilt induced by non-pathogenic Fusarium in Ipomoea tricolor. J Pesticide Sci 25:365–372

    Article  Google Scholar 

  • Shimizu M, Fujita N, Nakagawa Y, Nishimura T, Furumai T, Igarashi Y, Onaka H, Yoshida R, Kunoh H (2001) Disease resistance of tissue-cultured seedlings of rhododendron after treatment with Streptomyces sp. R-5. J Gen Plant Pathol 67:325–332

    Article  Google Scholar 

  • Shimizu B, Miyagawa H, Uneno T, Sakata R, Watanabe K, Ogawa K (2005a) Morning glory systemically accumulates scopoletin and scopolin after interaction with Fusarium oxysporum. Z Naturforsch 60:83–90

    CAS  Google Scholar 

  • Shimizu M, Suzuki T, Mogami O, Kunoh H (2005b) Disease resistance of plants induced by endophytic actinomycetes. In: Tsuyumu S, Leach JE, Shiraishi T, Wolpert (eds) Genomic and genetic analysis of plant parasitism and defense. APS Press, St. Paul, pp 292–293

  • Shimizu M, Meguro A, Hasegawa S, Nishimura T, Kunoh H (2006) Disease resistance induced by nonantagonistic endophytic Streptomyces spp. on tissue-cultured seedlings of rhododendron. J Gen Plant Pathol 72:351–354

    Article  Google Scholar 

  • Shimizu M, Yazawa S, Ushijima Y (2009) A promising strain of endophytic Streptomyces sp. for biological control of cucumber anthracnose. J Gen Plant Pathol 75:27–36

    Article  Google Scholar 

  • Shimizu K, Hossain MM, Kato K, Kubota M, Hyakumachi M (2013a) Induction of defense responses in cucumber plants by cell-free filtrate of the plant growth-promoting fungus Penicillium simplicissimum GP17-2. J Oleo Sci 62:613–621

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Hyakumachi M, Kubota M, Kuroda K (2013b) Biocontrol of Alternaria brassicicola on cabbage seedlings and Glomerella cingulata on strawberry seedlings by endophytic Streptomyces spp. IOBC/WRPS Bull 86:213–218

    Google Scholar 

  • Shimoi S, Inoue K, Kitagawa H, Yamasaki M, Tsushima S, Park P, Ikeda K (2010) Biological control for rice blast disease by employing detachment action with gelatinolytic bacteria. Biol Control 55:85–91

    Article  Google Scholar 

  • Shimotsuma M, Kuc J, Jones CM (1972) The effects of prior inoculations with non-pathogenic fungi on Fusarium wilt of watermelon. HortScience 7:72–73

    Google Scholar 

  • Shinohara H, Yoshida S, Enya J, Watanabe Y, Tsukiboshi T, Negishi H, Tsushima S (2011) Culturable bacterial communities on leaf sheaths and panicles of rice plants in Japan. Folia Microbiol 56:505–517

    Article  CAS  Google Scholar 

  • Shirata A (1986) Bacteriocins and their application to disease control (in Japanese). Plant Prot 40:379–382

    Google Scholar 

  • Shishido M (1999) PGPR story: past, present and future (in Japanese). Plant Prot 53:316–320

    Google Scholar 

  • Shishido M, Miwa C, Usami T, Amemiya Y, Johnson KB (2005) Biological control efficiency of Fusarium wilt of tomato by nonpathogenic Fusarium oxysporum Fo-B2 in different environments. Phytopathology 95:1072–1080

    Article  PubMed  Google Scholar 

  • Shivanna MB, Meera MS, Hyakumachi M (1994) Sterile fungi from zoysiagrass rhizosphere as plant growth promoters in spring wheat. Can J Microbiol 40:637–644

    Article  Google Scholar 

  • Shivanna MB, Meera MS, Hyakumachi M (1996) Role of root colonization ability of plant growth promoting fungi in the suppression of take-all and common root rot of wheat. Crop Prot 15:497–504

    Article  Google Scholar 

  • Shivanna MB, Meera MS, Kubota M, Hyakumachi M (2005) Promotion of growth and yield in cucumber by zoysiagrass rhizosphere fungi. Microbes Environ 20:34–40

    Article  Google Scholar 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89:515–521

    Article  CAS  PubMed  Google Scholar 

  • Someya N, Akutsu K (2009) Indigenous bacteria may interfere with the biocontrol of plant diseases. Naturwissenschaften 96:743–747

    Article  CAS  PubMed  Google Scholar 

  • Someya N, Ikeda S, Tsuchiya K (2013a) Pseudomonas inoculants as agents for plant disease management. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin, pp 219–241

    Chapter  Google Scholar 

  • Someya N, Kobayashi YO, Tsuda S, Ikeda S (2013b) Molecular characterization of the bacterial community in a potato phytosphere. Microbes Environ 28:295–305

    Article  PubMed  Google Scholar 

  • Sultana F, Hossain MM, Kubota M, Hyakumachi M (2008) Elicitation of systemic resistance against the bacterial speck pathogen in Arabidopsis thaliana by culture filtrates of plant growth-promoting fungi. Can J Plant Pathol 30:196–205

    Article  Google Scholar 

  • Sultana F, Hossain MM, Kubota M, Hyakumachi M (2009) Induction of systemic resistance in Arabidopsis thaliana in response to a culture filtrate from a plant growth-promoting fungus, Phoma sp. GS8-3. Plant Biol 11:97–104

    Article  CAS  PubMed  Google Scholar 

  • Taguchi Y (2004) Scattering methods for biological control of gray mold disease of vegetables using Bacillus subtilis IK-1080 (in Japanese). Plant Prot 58:102–106

    Google Scholar 

  • Takahara Y (1992) Biological control of soft rot disease by avirulent strains of Erwinia carotovora subsp. carotovora (in Japanese). Plant Prot 46:484–487

    Google Scholar 

  • Takahashi H, Takenaka S (2010) Defense system induced by elicitin-like proteins of biocontrol agent Pythium oligandrum. In: Wolpert T, Shiraishi T, Akimitsu K, Glazebrook J (eds) Genome-enabled integration of research in plant–pathogen systems. APS Press, St Paul, pp 39–46

    Google Scholar 

  • Takahashi H, Ishihara T, Hase S, Chiba A, Nakaho K, Arie T, Teraoka T, Iwata M, Tugane T, Shibata D, Takenaka S (2006) Beta-cyanoalanine synthase as a molecular marker for induced resistance by fungal glycoprotein elicitor and commercial plant activators. Phytopathology 96:908–916

    Article  CAS  PubMed  Google Scholar 

  • Takaki S, Kitamura A, Marumoto T (1992) Control of Fusarium disease using antagonistic actinomycetes I. Screening of antagonistic actinomycetes to Fusarium oxysporum. Soil Microorg 39:35–40

    Google Scholar 

  • Takenaka S, Ishikawa S (2013) Biocontrol of sugar beet seedling and taproot diseases caused by Aphanomyces cochlioides by Pythium oligandrum treatments before transplanting. Jpn Agric Res Q 47:75–83

    Article  Google Scholar 

  • Takenaka S, Tamagake H (2009) Foliar spray of a cell wall protein fraction from the biocontrol agent Pythium oligandrum induces defence-related genes and increases resistance against Cercospora leaf spot in sugar beet. J Gen Plant Pathol 75:340–348

    Article  Google Scholar 

  • Takenaka S, Nishio Z, Nakamura Y (2003) Induction of defense reactions in sugar beet and wheat by treatment with cell wall protein fractions from the mycoparasite Pythium oligandrum. Phytopathology 93:1228–1232

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S, Nakamura Y, Kono T, Sekiguchi H, Masunaka A, Takahashi H (2006) Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. Mol Plant Pathol 7:325–339

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S, Sekiguchi H, Nakaho K, Tojo M, Masunaka A, Takahashi H (2008) Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Phytopathology 98:187–195

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S, Yamaguchi K, Masunaka A, Hase S, Inoue T, Takahashi H (2011) Implications of oligomeric forms of POD-1 and POD-2 proteins isolated from cell walls of the biocontrol agent Pythium oligandrum in relation to their ability to induce defense reactions in tomato. J Plant Physiol 168:1972–1979

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Yamada K, Haas D (2012) ppGpp controlled by the Gac/Rsm regulatory pathway sustains biocontrol activity in Pseudomonas fluorescens CHA0. Mol Plant–Microbe Interact 25:1440–1449

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Negishi H, Maeda H (1990) Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Ann Phytopath Soc Japan 56:243–246

    Article  Google Scholar 

  • Tazawa J, Watanabe K, Yoshida H, Sato M, Homma Y (2000) Simple method of detection of the strains of fluorescent Pseudomonas spp. producing antibiotics, pyrrolnitrin and phloroglucinol. Soil Microorg 54:61–67

    Google Scholar 

  • Tezuka N, Makino T (1991) Biological control of Fusarium wilt of strawberry by nonpathogenic Fusarium oxysporum isolated from strawberry (in Japanese). Ann Phytopath Soc Japan 57:506–511

    Article  Google Scholar 

  • Tien P, Wu GS (1991) Satellite RNA for the biocontrol of plant disease. Adv Virus Res 39:321–339

    Article  CAS  PubMed  Google Scholar 

  • Togashi J (1999) Biological control of soft rot of Chinese cabbage (in Japanese). J Pestic Sci 24:401–407

    Article  Google Scholar 

  • Toyoda H, Morimoto M, Kakutani K, Morikawa M, Fukamizo T, Goto S, Terada H, Ouchi S (1993) Binary microbe system for biological control of Fusarium wilt of tomato: enhanced root-colonization of an antifungal rhizoplane bacterium supported by a chitin-degrading bacterium. Ann Phytopath Soc Japan 59:375–386

    Article  CAS  Google Scholar 

  • Tsuchiya K, Homma Y, Komoto Y, Suzui T (1995) Practical detection of Pseudomonas cepacia from rhizosphere antagonistic to plant pathogens with a combination of selective medium and ELISA. Ann Phytopathol Soc Jpn 61:318–324

    Article  CAS  Google Scholar 

  • Tsuda K, Kosaka Y, Tsuge S, Kubo Y, Horino O (2001) Evaluation of the endophyte Enterobacter cloacae SM10 isolated from spinach roots for biological control against Fusarium wilt of spinach. J Gen Plant Pathol 67:78–84

    Article  Google Scholar 

  • Tsushima S (2007) New frontiers in the application of microbial community (in Japanese with English abstract). In: Hyakumachi M, Tsushima S (eds) New strategies in the application of biocontrol agents and new frontiers in biocontrol researches. Phytopathol Soc Jpn, Tokyo, pp 113–122

    Google Scholar 

  • Tsushima S, Torigoe H (1991) Suppression of bacterial grain rot of rice by antagonistic bacteria (in Japanese). Plant Prot 45:91–95

    Google Scholar 

  • Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184

    Article  CAS  PubMed  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon M, Déry C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62:1630–1635

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Hulten M, Pelser M, van Loon LC, Pieterse CM, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wada T (2005) Biofungicides, beginning to see the light? In: Tsuchiya K, Tsushima S (eds) Function of microorganism as a biocontrol agent and its extension. Phytopathol Soc Jpn, Tokyo, pp 1–15

    Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005a) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant–Microbe Interact 18:385–396

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang Q, Tosa Y, Nakayashiki H, Mayama S (2005b) Nitric oxide-overproducing transformants of Pseudomonas fluorescens with enhanced biocontrol of tomato bacterial wilt. J Gen Plant Pathol 71:33–38

    Article  CAS  Google Scholar 

  • Windham MT, Elad Y, Baker R (1986) A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology 76:518–521

    Article  Google Scholar 

  • Yamagiwa Y, Inagaki Y, Ichinose Y, Toyoda K, Hyakumachi M, Shiraishi T (2011) Talaromyces wortmannii FS2 emits β-caryophyllene, which promotes plant growth and induces resistance. J Gen Plant Pathol 77:336–341

    Article  CAS  Google Scholar 

  • Yamaguchi K, Sano T, Arita M, Takahashi M (1992) Biocontrol of Fusarium wilt of tomato and Verticilium wilt of eggplant by non-pathogenic Fusarium oxysporum MT0062. Ann Phytopath Soc Japan 58:188–194

    Article  Google Scholar 

  • Yamasaki S, Sakai J, Kamisoyama S, Goto H, Okuda M, Hanada K (2009) Control of russet crack disease in sweetpotato plants using a protective mild strain of Sweet potato feathery mottle virus. Plant Dis 93:190–194

    Article  CAS  Google Scholar 

  • Yasuda M, Isawa T, Shinozaki S, Minamisawa K, Nakashita H (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599

    Article  CAS  PubMed  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumic sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida S (2009) Interactions among different microbial species and their possible roles on biological control (in Japanese). Plant Prot 63:619–623

    Google Scholar 

  • Yoshida K, Goto T, Iizuka N (1985) Attenuated isolates of cucumber mosaic virus produced by satellite RNA and cross protection between attenuated isolates and virulent ones. Ann Phytopath Soc Japan 51:238–242

    Article  Google Scholar 

  • Yoshida S, Shirata A, Hiradate S (2002) Ecological characteristics and biological control of mulberry anthracnose. Jpn Agric Res Q 36:89–95

    Google Scholar 

  • Yoshida S, Ohba A, Liang YM, Koitabashi M, Tsushima S (2013) Specificity of Pseudomonas isolates on healthy and Fusarium head blight-infected spikelets of wheat heads. Microb Ecol 64:214–225

    Article  Google Scholar 

  • Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag Sci 68:60–66

    Article  CAS  PubMed  Google Scholar 

  • Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou K, Yamagishi M, Osaki M (2008) Paenibacillus BRF-1 has biocontrol ability against Phialophora gregata disease and promotes soybean growth. Soil Sci Plant Nutr 54:870–875

    Article  CAS  Google Scholar 

  • Ziebell H, Carr JP (2010) Cross-protection: a century of mystery. Adv Virus Res 76:211–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Promotion of Basic and Applied Researches in Bio-oriented Industry (BRAIN), the Ministry of Education, Culture, Sports and Technology of Japan (Grant-in-Aid for Scientific Research (C), No. 24580065) to MN and (Grant-in-Aid for Challenging Exploratory Research, No. 24658044) to KK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuro Hyakumachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyakumachi, M., Takahashi, H., Matsubara, Y. et al. Recent studies on biological control of plant diseases in Japan. J Gen Plant Pathol 80, 287–302 (2014). https://doi.org/10.1007/s10327-014-0524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-014-0524-4

Keywords

Navigation