Skip to main content

Advertisement

Log in

Temporal registration: a new approach to manage the incomplete recovery of the longitudinal magnetization in the Modified Look-Locker Inversion Recovery sequence (MOLLI) for T1 mapping of the heart

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Purpose

To correct with post-processing effects of incomplete recovery of the longitudinal magnetization before a new inversion pulse in the Modified Look-Locker Inversion recovery sequence (MOLLI) sequence.

Theory and methods

We model such effects as a temporal shift (\(\tau\)) of the signal of the Look-Locker block following next inversion pulses. After using the following equation \(S\left( t \right) = A - B \times \exp \left( { - \left( {t + \tau } \right)/T1^{*} } \right)\), a temporal registration of \(\tau\) is applied to the signal of the affected block to adjust the sampling time of the recovery signal and correct the underlying effect on quantitative T1. To test our approach, simulations, phantoms, and five volunteers’ data were used while applying different MOLLI sampling schemes at different heart rates and compared to the reference three-parameter fit.

Results

The temporal registration of the affected signals allows to reach higher accuracy on long T1 when compared to the reference three parameters fit (10.15 vs 22.12% for T1 = 1785 ms; 8.22 vs 14.65% for T1 = 1278 ms), and lower average variation in case of rest-period deletion (62 vs 231 ms).

Conclusion

The proposed approach leads to more accurate T1 in case of incomplete recovery. It is less sensitive to parameters affecting the recovery such as the rest period or the sampling scheme; and, therefore, supports multi-center studies with different MOLLI protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146

    Article  Google Scholar 

  2. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92

    Article  Google Scholar 

  3. de Meester de Ravenstein C, Bouzin C, Lazam S, Boulif J, Amzulescu M, Melchior J, Pasquet A, Vancraeynest D, Pouleur A-C, Vanoverschelde J-LJ, Gerber BL (2015) Histological validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from Modified Look-Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson 17:48

    Article  Google Scholar 

  4. Lee JJ, Liu S, Nacif MS, Ugander M, Han J, Kawel N, Sibley CT, Kellman P, Arai AE, Bluemke DA (2011) Myocardial T1 and extracellular volume fraction mapping at 3 tesla. J Cardiovasc Magn Reson 13:75

    Article  Google Scholar 

  5. Kellman P, Arai AE, Xue H (2013) T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson 15:56

    Article  Google Scholar 

  6. Higgins DM, Moon JC (2014) Review of T1 mapping methods: comparative effectiveness including reproducibility issues. Curr Cardiovasc Imaging Rep. https://doi.org/10.1007/s12410-013-9252-y

    Article  Google Scholar 

  7. Charles R, Kachenoura N, Kamenicky P, Mousseaux E, Chanson P, Redheuil A (2015) T1 mapping in Cushing’s disease: a follow-up study. J Cardiovasc Magn Reson 17:1–3

    Article  Google Scholar 

  8. Kachenoura N, Besson-Hajji L, Graves MJ, Reid S, Soulat G, Ashrafpoor G, De Cesare A, Hagege A, Redheuil A, Mousseaux E (2015) Kinetic index combining native and postcontrast myocardial T1 in hypertrophic cardiomyopathy. J Magn Reson Imaging 42:1713–1722

    Article  Google Scholar 

  9. Roux C, Kachenoura N, Raissuni Z, Mousseaux E, Young J, Graves MJ, Jublanc C, Cluzel P, Chanson P, Kamenický P, Redheuil A (2016) Effects of cortisol on the heart: characterization of myocardial involvement in cushing’s disease by longitudinal cardiac MRI T1 mapping. J Magn Reson Imaging 45:147–156

    Article  Google Scholar 

  10. Sibley CT, Noureldin RA, Gai N, Nacif MS, Liu S, Turkbey EB, Mudd JO, van der Geest RJ, Lima JAC, Halushka MK, Bluemke DA (2012) T1 mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology 265:724–732

    Article  Google Scholar 

  11. Pica S, Sado DM, Maestrini V, Fontana M, White SK, Treibel T, Captur G, Anderson S, Piechnik SK, Robson MD, Lachmann RH, Murphy E, Mehta A, Hughes D, Kellman P, Elliott PM, Herrey AS, Moon JC (2014) Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16:99

    Article  Google Scholar 

  12. Krombach GA, Hahn C, Tomars M, Buecker A, Grawe A, Günther RW, Kühl HP (2007) Cardiac amyloidosis: MR imaging findings and T1 quantification, comparison with control subjects. J Magn Reson Imaging 25:1283–1287

    Article  Google Scholar 

  13. Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, Piechnik SK, Whelan CJ, Herrey AS, Gillmore JD, Lachmann HJ, Wechalekar AD, Hawkins PN, Moon JC (2015) T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 36:244–251

    Article  Google Scholar 

  14. Messroghli DR, Walters K, Plein S, Sparrow P, Friedrich MG, Ridgway JP, Sivananthan MU (2007) Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med 58:34–40

    Article  Google Scholar 

  15. Piechnik SK, Jerosch-Herold M (2018) Myocardial T1 mapping and extracellular volume quantification: an overview of technical and biological confounders. Int J Cardiovasc Imaging 34:3–14

    Article  Google Scholar 

  16. Falque C, Kober F, Bernard M, Jacquier A (2014) Accuracy and precision of myocardial T1mapping with MOLLI and ShMOLLI at 1.5 T and 3.0 T: a phantom study. J Cardiovasc Magn Reson 16:P54

    Article  Google Scholar 

  17. Nordin S, Kozor R, Baig S, Abdel-Gadir A, Medina-Menacho K, Rosmini S, Captur G, Tchan M, Geberhiwot T, Murphy E, Lachmann R, Ramaswami U, Edwards NC, Hughes D, Steeds RP, Moon JC (2018) Cardiac phenotype of prehypertrophic fabry disease. Circ Cardiovasc Imaging 11:e007168

    Article  Google Scholar 

  18. Baggiano A, Boldrini M, Martinez-Naharro A, Kotecha T, Petrie A, Rezk T, Gritti M, Quarta C, Knight DS, Wechalekar AD, Lachmann HJ, Perlini S, Pontone G, Moon JC, Kellman P, Gillmore JD, Hawkins PN, Fontana M (2019) Noncontrast magnetic resonance for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2019.03.026

    Article  PubMed  Google Scholar 

  19. Deichmann R (1969) Haase A (1992) Quantification of T1 values by SNAPSHOT-FLASH NMR imaging. J Magn Reson 96:608–612

    Google Scholar 

  20. Kellman P, Hansen MS (2014) T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 16:2

    Article  Google Scholar 

  21. Kellman P, Herzka DA, Hansen MS (2014) Adiabatic inversion pulses for myocardial T1-mapping. Magn Reson Med 71:1428–1434

    Article  Google Scholar 

  22. Rodgers CT, Piechnik SK, DelaBarre LJ, Van de Moortele P-F, Snyder CJ, Neubauer S, Robson MD, Vaughan JT (2013) Inversion recovery at 7 T in the human myocardium: measurement of T1, inversion efficiency and B1+. Magn Reson Med 70:1038–1046

    Article  Google Scholar 

  23. Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlin LE, Greiser A, Neubauer S, Robson MD (2010) Shortened modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 12:69

    Article  Google Scholar 

  24. Sussman MS, Yang IY, Fok K-H, Wintersperger BJ (2015) Inversion group (IG) fitting: a new T1 mapping method for modified look-locker inversion recovery (MOLLI) that allows arbitrary inversion groupings and rest periods (including no rest period). Magn Reson Med 75:2332–2340

    Article  Google Scholar 

  25. Hargreaves BA, Vasanawala SS, Pauly JM, Nishimura DG (2001) Characterization and reduction of the transient response in steady-state MR imaging. Magn Reson Med 46:149–158

    Article  CAS  Google Scholar 

  26. Gai ND, Stehning C, Nacif M, Bluemke DA (2013) Modified Look-Locker T1 evaluation using Bloch simulations: human and phantom validation. Magn Reson Med 69:329–336

    Article  Google Scholar 

  27. Shao J, Nguyen K-L, Natsuaki Y, Spottiswoode B, Hu P (2015) Instantaneous signal loss simulation (InSiL): an improved algorithm for myocardial T1 mapping using the MOLLI sequence. J Magn Reson Imaging 41:721–729

    Article  Google Scholar 

  28. Roujol S, Weingärtner S, Foppa M, Chow K, Kawaji K, Ngo LH, Kellman P, Manning WJ, Thompson RB, Nezafat R (2014) Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology 272:683–689

    Article  Google Scholar 

  29. Shao J, Rapacchi S, Nguyen K-L, Hu P (2016) Myocardial T1 mapping at 3.0 tesla using an inversion recovery spoiled gradient echo readout and bloch equation simulation with slice profile correction (BLESSPC) T1 estimation algorithm. J Magn Reson Imaging 43:414–425

    Article  Google Scholar 

  30. Shao J, Liu D, Sung K, Nguyen K-L, Hu P (2017) Accuracy, precision, and reproducibility of myocardial T1 mapping: a comparison of four T1 estimation algorithms for modified look-locker inversion recovery (MOLLI). Magn Reson Med 78:1746–1756

    Article  Google Scholar 

  31. Shao J, Zhou Z, Nguyen K-L, Finn JP, Hu P (2019) Accurate, precise, simultaneous myocardial T1 and T2 mapping using a radial sequence with inversion recovery and T2 preparation. NMR Biomed 32:e4165

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HR study conception and design, acquisition of data, analysis and interpretation of data, and drafting of manuscript. TG analysis and interpretation of data, and critical revision. GS acquisition of data, analysis, and interpretation of data. NK analysis and interpretation of data, and critical revision. AM study conception and design. CAC analysis and interpretation of data, and critical revision. EM acquisition of data, analysis and interpretation of data, and critical revision.

Corresponding author

Correspondence to Habib Rebbah.

Ethics declarations

Conflict of interest

Rebbah, and Galas, and Menini are/were employees of GE Healthcare. Soulat declares that he has no conflict of interest. Kachenoura declares that she has no conflict of interest. Cuenod declares that he has no conflict of interest. Mousseaux declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebbah, H., Galas, T., Soulat, G. et al. Temporal registration: a new approach to manage the incomplete recovery of the longitudinal magnetization in the Modified Look-Locker Inversion Recovery sequence (MOLLI) for T1 mapping of the heart. Magn Reson Mater Phy 33, 569–580 (2020). https://doi.org/10.1007/s10334-019-00815-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-019-00815-6

Keywords

Navigation