Skip to main content

Advertisement

Log in

Global patterns of seasonal acclimatization in avian resting metabolic rates

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The adjustment of resting metabolic rates represents an important component of avian seasonal acclimatization, with recent studies revealing substantial differences between summer and winter in birds from a wide range of latitudes. We compared seasonal variation in basal metabolic rate (BMR) and summit metabolism (M sum) between temperate and tropical/subtropical latitudes, and examined correlations with latitude and temperature. The direction and magnitude of seasonal adjustments in BMR are broadly related to temperature and latitude, but are significantly more variable among tropical and subtropical species compared to those inhabiting temperate zones. Winter adjustments in BMR among subtropical species, when expressed relative to summer values, range from decreases of approximately 35 % to increases of more than 60 %, whereas the majority of temperate-zone species show increases in BMR during winter. Relatively few seasonal M sum data exist for tropical/subtropical species, but those that are available involve responses ranging from winter decreases to increases of similar magnitude to those characteristic of many temperate-zone species. Recent studies also highlight the substantial variation in seasonal adjustments that may occur within species, and reiterate the need for further investigations of the relative roles of environmental variables such as temperature and food availability as determinants of seasonal metabolic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson KJ, Jetz W (2005) The broad-scale ecology of energy expenditure of endotherms. Ecol Lett 8:310–318

    Article  Google Scholar 

  • Arens JR, Cooper SJ (2005) Metabolic and ventilatory acclimatization to cold stress in House Sparrows (Passer domesticus). Physiol Biochem Zool 78(4):579–589

    Article  PubMed  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745

    Article  PubMed  Google Scholar 

  • Bush NG, Brown M, Downs CT (2008) Seasonal effects on thermoregulatory responses of the Rock Kestrel, Falco rupicolis. J Therm Biol 33(7):404–412

    Article  Google Scholar 

  • Careau V, Thomas D, Humphries MM, Réale D (2008) Energy metabolism and animal personality. Oikos 117(5):641–653

    Article  Google Scholar 

  • Chamane S, Downs CT (2009) Seasonal effects on metabolism and thermoregulation abilities of the red-winged starling (Onychognathus morio). J Therm Biol 34:337–341

    Article  CAS  Google Scholar 

  • Cooper SJ (2000) Seasonal energetics of mountain chickadees and juniper titmice. Condor 102(3):635–644

    Article  Google Scholar 

  • Cooper SJ (2002) Seasonal metabolic acclimatization in mountain chickadees and juniper titmice. Physiol Biochem Zool 75(4):386–395

    Article  PubMed  Google Scholar 

  • Cooper SJ, Swanson DL (1994) Seasonal acclimatization of thermoregulation in the black-capped chickadee. Condor 96:638–646

    Article  Google Scholar 

  • Dawson WR, Carey C (1976) Seasonal acclimation to temperature in Cardueline finches. J Comp Physiol 112:317–333

    Article  Google Scholar 

  • Dawson WR, Buttemer WA, Carey C (1985) A reexamination of the metabolic response of house finches to temperature. Condor 87:424–427

    Article  Google Scholar 

  • Doucette LI, Geiser F (2008) Seasonal variation in thermal energetics of the Australian owlet-nightjar (Aegotheles cristatus). Comp Biochem Physiol A 151:615–620

    Article  Google Scholar 

  • Downs CT, Zungu MM, Brown M (2012) Seasonal effects on thermoregulatory abilities of the Wahlberg’s epauletted fruit bat (Epomophorus wahlbergi) in KwaZulu-Natal, South Africa. J Therm Biol 37:144–150

    Article  Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  PubMed  CAS  Google Scholar 

  • Hart JS (1962) Seasonal acclimatization in four species of small wild birds. Physiol Zool 35:224–236

    Google Scholar 

  • Jetz W, Thomas GE, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491:444–448

    Article  PubMed  CAS  Google Scholar 

  • Liknes ET, Swanson DL (1996) Seasonal variation in cold tolerance, basal metabolic rate, and maximal capacity for thermogenesis in white-breasted nuthatches Sitta carolinensis and downy woodpeckers Picoides pubescens, two unrelated arboreal temperate residents. J Avian Biol 27(4):279–288

    Article  Google Scholar 

  • Liknes ET, Scott SM, Swanson DL (2002) Seasonal acclimatization in the American Goldfinch revisited: to what extent do metabolic rates vary seasonally? Condor 104:548–557

    Article  Google Scholar 

  • Lill A, Box J, Baldwin J (2006) Do metabolism and contour plumage insulation vary in response to seasonal energy bottlenecks in superb fairy-wrens? Aust J Zool 54:23–30

    Article  Google Scholar 

  • Lindsay CV, Downs CT, Brown M (2009a) Physiological variation in amethyst sunbirds (Chalcomitra amethystina) over an altitudinal gradient in summer. J Therm Biol 34(4):190–199

    Article  Google Scholar 

  • Lindsay CV, Downs CT, Brown M (2009b) Physiological variation in amethyst sunbirds (Chalcomitra amethystina) over an altitudinal gradient in winter. J Exp Biol 212:483–493

    Article  PubMed  Google Scholar 

  • Londoño GA, Chappell MA, del Rosario Castañeda M, Jankowski JE, Robinson SK (in press) Basal metabolism in tropical birds: latitude, altitude, and the “pace of life”. Funct Ecol

  • Lovegrove BG (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156(2):201–219

    Article  PubMed  Google Scholar 

  • Lovegrove BG, Lawes MJ, Roxburgh L (1999) Confirmation of plesiomorphic daily torpor in mammals: the round-eared elephant shrew Macroscelides proboscideus (Macroscelidea). J Comp Physiol B 169:453–460

    Article  PubMed  CAS  Google Scholar 

  • Lovegrove BG, Perrin MR, Brown M (2011) The allometry of parrot BMR: seasonal data for the greater vasa parrot, Coracopsis vasa, from Madagascar. J Comp Physiol B 181:1075–1087

    Article  PubMed  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 http://mesquiteproject.org

  • Maddocks TA, Geiser F (2000) Seasonal variations in thermal energetics of Australian silvereyes (Zosterops lateralis). J Zool Lond 252(3):327–333

    Article  Google Scholar 

  • Maldonado KE, Cavieres G, Veloso C, Canals M, Sabat P (2009) Physiological responses in rufous-collared sparrows to thermal acclimation and seasonal acclimatization. J Comp Physiol B 179(3):335–343

    Article  PubMed  Google Scholar 

  • McKechnie AE (2008) Phenotypic flexibility in basal metabolic rate and the changing view of avian physiological diversity: a review. J Comp Physiol B 178:235–247

    Article  PubMed  Google Scholar 

  • Merola-Zwartjes M, Ligon JD (2000) Ecological energetics of the Puerto Rican tody: heterothermy, torpor and intra-island variation. Ecology 81(4):990–1002

    Article  Google Scholar 

  • Minnaar IA, Bennett NC, Chimimba CT, McKechnie AE (2014) Summit metabolism and metabolic expansibility in Wahlberg’s epauletted fruit bats (Epomophorus wahlbergi): seasonal acclimatisation and effects of captivity. J Exp Biol 217:1363–1369

    Article  PubMed  Google Scholar 

  • Montgomerie R, Lyon B, Holder K (2001) Dirty ptarmigan: behavioral modification of conspicuous male plumage. Behav Ecol 12(4):429–438

    Article  Google Scholar 

  • Nzama SN, Downs CT, Brown M (2010) Seasonal variation in the metabolism–temperature relation of House Sparrows (Passer domesticus) in KwaZulu-Natal, South Africa. J Therm Biol 35(2):100–104

    Article  Google Scholar 

  • O’Connor TP (1995) Metabolic characteristics and body composition in house finches: effects of seasonal acclimatization. J Comp Physiol B 165:298–305

    Article  Google Scholar 

  • O’Connor TP (1996) Geographic variation in metabolic seasonal acclimatization in house finches. Condor 98:371–381

    Article  Google Scholar 

  • Orme D, Freckleton RP, Petzoldt T, Fritz S, Isaac N, W P (2013) Caper: comparative analyses of phylogenetics and evolution in R. Methods Ecol Evol 3:145–151

  • Paradis E, Bolker B, Claude J, Cuong H, Desper R, Du-rand B, Dutheil J, Gascuel O, Heibl C, Lawson D, Lefort V, Legendre P, Lemon J, Noel Y, Nylander J, Opgen-Rhein R, Popescu A-A, Schliep K, Strimmer K, De Vienne D (2013) Ape: analyses of phylogenetics and evolution. Bioinformatics 20(2):289–290

    Article  Google Scholar 

  • Petit M, Vezina F (2014) Reaction norms in natural conditions: how does metabolic performance respond to weather variations in a small endotherm facing cold environments? PLoS OME 9(11):e113617

    Article  PubMed  PubMed Central  Google Scholar 

  • Pohl H (1971) Seasonal variation in metabolic functions of bramblings. Ibis 113:185–193

    Article  Google Scholar 

  • Pohl H, West GC (1973) Daily and seasonal variation in metabolic response to cold during rest and exercise in the common redpoll. Comp Biochem Physiol 45A:851–867

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ricklefs RE, Konarzewski M, Daan S (1996) The relationship between basal metabolic rate and daily energy expenditure in birds and mammals. Am Nat 147(6):1047–1071

    Article  Google Scholar 

  • Rising J (2011) Dark-eyed Junco (Junco hyemalis). In: del Hoyo J, Elliot A, Sargatal J, Christie DA, de Juana E (eds) Handbook of the birds of the world alive, vol http://www.hbw.com/node/61909. Lynx, Barcelona

  • Rising JD, Hudson JW (1974) Seasonal variation in the metabolism and thyroid activity of the black-capped chickadee (Parus atricapillus). Condor 76:198–203

    Article  Google Scholar 

  • Saarela S, Klapper B, Heldmaier G (1995) Daily rhythm of oxygen consumption and thermoregulatory responses in some European winter- or summer-acclimatized finches at different ambient temperatures. J Comp Physiol B 165:366–376

    Article  Google Scholar 

  • Sgueo C, Wells ME, Russel DA, Schaeffer PJ (2012) Acclimatization of seasonal energetics in northern cardinals (Cardinalis cardinalis) through plasticity of metabolic rates and ceilings. J Exp Biol 215:2418–2424

    Article  PubMed  Google Scholar 

  • Sharbaugh SM (2001) Seasonal acclimatization to extreme climatic conditions by black-capped chickadees (Poecile atricapilla) in interior Alaska (64ºN). Physiol Biochem Zool 74(4):568–575

    Article  PubMed  CAS  Google Scholar 

  • Smit B, McKechnie AE (2010) Avian seasonal metabolic variation in a subtropical desert: basal metabolic rates are lower in winter than in summer. Funct Ecol 24:330–339

    Article  Google Scholar 

  • Smith CC, Reichman OJ (1984) The evolution of food caching by birds and mammals. Annu Rev Ecol Syst 15:329–351

    Article  Google Scholar 

  • Southwick EE (1980) Seasonal thermoregulatory adjustments in white-crowned sparrows. Auk 97:76–85

    Google Scholar 

  • Swanson DL (1990) Seasonal variation in cold hardiness and peak rates of cold-induced thermogenesis in the dark-eyed junco (Junco hyemalis). Auk 107:561–566

    Google Scholar 

  • Swanson DL (1991) Seasonal adjustments in metabolism and insulation in the Dark-eyed Junco. Condor 93:538–545

    Article  Google Scholar 

  • Swanson DL (2010) Seasonal metabolic variation in birds: functional and mechanistic correlates. Curr Ornithol 17:75–129

    Google Scholar 

  • Swanson DL, Garland T (2009) The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions. Evolution 63:184–194

    Article  PubMed  CAS  Google Scholar 

  • Swanson DL, Liknes ET (2006) A comparative analysis of thermogenic capacity and cold tolerance in small birds. J Exp Biol 209:466–474

    Article  PubMed  Google Scholar 

  • Swanson DL, Olmstead KL (1999) Evidence for a proximate influence of winter temperatures on metabolism in passerine birds. Physiol Biochem Zool 72(5):566–575

    Article  PubMed  CAS  Google Scholar 

  • Swanson DL, Weinacht DP (1997) Seasonal effects on metabolism and thermoregulation in northern bobwhite. Condor 99:478–489

    Article  Google Scholar 

  • van de Ven TMFN, Mzilikazi N, McKechnie AE (2013) Seasonal metabolic variation in two populations of an Afrotropical euplectid bird. Physiol Biochem Zool 86(1):19–26

    Article  PubMed  Google Scholar 

  • Weathers WW, Caccamise DF (1978) Seasonal acclimatization to temperature in monk parakeets. Oecologia 35:173–183

    Article  Google Scholar 

  • Wells ME, Schaeffer PJ (2012) Seasonality of peak metabolic rate in non-migrant tropical birds. J Avian Biol 43:481–485

    Article  Google Scholar 

  • Wiersma P, Chappell MA, Williams JB (2007a) Cold- and exercise-induced peak metabolic rates in tropical birds. Proc Natl Acad Sci USA 104(52):20866–20871

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wiersma P, Muñoz-Garcia A, Walker A, Williams JB (2007b) Tropical birds have a slow pace of life. Proc Natl Acad Sci USA 104(22):9340–9345

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wijnandts H (1984) Ecological energetics of the long-eared owl (Asio otus). Ardea 72:1–92

    Google Scholar 

  • Wilson A-L, Brown M, Downs CT (2011) Seasonal variation in metabolic rate of a medium-sized frugivore, the Knysna Turaco (Tauraco corythaix). J Therm Biol 36:167–172

    Article  Google Scholar 

  • Withers PC (1992) Comparative animal physiology. Saunders College Publishing, Fort Worth

    Google Scholar 

  • Zheng W-H, Liu J-S, Jiang X-H, Fang Y-Y, Zhang G-K (2008a) Seasonal variation on metabolism and thermoregulation in Chinese bulbul. J Therm Biol 33:315–319

    Article  Google Scholar 

  • Zheng W-H, Ming L, Liu J-S, Shao S-L (2008b) Seasonal acclimatization of metabolism in Eurasian tree sparrows (Passer montanus). Comp Biochem Physiol A 151(4):519–525

    Article  Google Scholar 

Download references

Acknowledgments

We thank David Swanson and François Vézina for organizing an exceptionally interesting and enjoyable symposium, and the International Ornithological Congress for a travel grant to A.E.M. Two anonymous reviewers provided insightful comments that greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew E. McKechnie.

Additional information

Communicated by E. Matthysen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKechnie, A.E., Noakes, M.J. & Smit, B. Global patterns of seasonal acclimatization in avian resting metabolic rates. J Ornithol 156 (Suppl 1), 367–376 (2015). https://doi.org/10.1007/s10336-015-1186-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1186-5

Keywords

Navigation