Skip to main content
Log in

A Modified Symmetric and Antisymmetric Decomposition-Based Three-Dimensional Numerical Manifold Method for Finite Elastic–Plastic Deformations

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

There are relatively few studies on large rotation or deformation by means of the three-dimensional (3D) numerical manifold method (NMM). A new modified symmetric and antisymmetric decomposition (MSAD) theory is developed and implemented into the 3D NMM, eliminating the false-volume expansion and false-rotation strain/stress problems. The Jaumann rate is used to measure the material rotation, and the geometric stiffness built on the Jaumann rate is deduced. The incremental formulas of the MSAD-based 3D NMM and a practical guide on the implementation of the MSAD theory are given in detail and exemplified. The new theory and formulas can be applied to analyze both large rotation and large deformation problems. Based on the hypoelasto-plasticity theory and the unified strength theory, the unified yield criterion with associated flow rule is implemented into the MSAD-based 3D NMM. Several typical examples are studied, showing the advantage and potential of the new MSAD theory and the MSAD-based 3D NMM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Shi GH. Simplex integration for manifold method, FEM, DDA and analytical analysis. In: Proceedings of 1st Internat. Forum on discontinuous deformation analysis, DDA and simulations of discontinuous media, TSI Press, Albuquerque, New Mexico, USA; 1996. pp. 205–62.

  2. Shi GH. Manifold method of material analysis. In: Transactions of the 9th Army conference on applied mathematics and computing, Report No. 92-1, US Army Research Office, Minneapolis, MN; 1991. pp. 57–76.

  3. Shi GH. Modeling rock joints and blocks by manifold method. In: Rock mechanics proceedings of the 33rd US symposium, New Mexico, Santa Fe; 1992. pp. 639–48.

  4. Chen N, Kemeny J, Jiang QH, Pan ZW. Automatic extraction of blocks from 3D point clouds of fractured rock. Comput Geosci. 2017;109:149–61.

    Google Scholar 

  5. Jiang QH, Zhou CB. A rigorous solution for the stability of polyhedral rock blocks. Comput Geotech. 2017;90:190–201.

    Google Scholar 

  6. Wang Y, Hu MS, Zhou QL, Rutqvist J. Energy-work-based numerical manifold seepage analysis with an efficient scheme to locate the phreatic surface. Int J Numer Anal Methods Geomech. 2014;38(15):1633–50.

    Google Scholar 

  7. Zheng H, Liu F, Li CG. Primal mixed solution to unconfined seepage flow in porous media with numerical manifold method. Appl Math Model. 2015;39(2):794–808.

    MathSciNet  MATH  Google Scholar 

  8. Jiang QH, Deng SS, Zhou CB, Lu WB. Modeling unconfined seepage flow using three-dimensional numerical manifold method. J Hydrodyn. 2010;22(4):554–61.

    Google Scholar 

  9. Jiang QH, Deng SS, Zhou CB. Three-dimensional numerical manifold method for seepage problems with free surfaces. Rock Soil Mech. 2011;32(3):879–84.

    Google Scholar 

  10. Tsay RJ, Chiou YJ, Chuang WL. Crack growth prediction by manifold method. J Eng Mech. 1999;125(8):884–90.

    Google Scholar 

  11. Chiou YJ, Lee YM, Tsay RJ. Mixed mode fracture propagation by manifold method. Int J Fract. 2002;114(4):327–47.

    Google Scholar 

  12. Ma GW, An XM, Zhang HH, Li LX. Modeling complex crack problems using the numerical manifold method. Int J Fract. 2009;156(1):21–35.

    MATH  Google Scholar 

  13. Wu ZJ, Wong LNY. Modeling cracking behavior of rock mass containing inclusions using the enriched numerical manifold method. Eng Geol. 2013;162(25):1–13.

    Google Scholar 

  14. Zheng H, Liu F, Li CG. The MLS-based numerical manifold method with applications to crack analysis. Int J Fract. 2014;190(1–2):147–66.

    Google Scholar 

  15. Yang SK, Ma GW, Ren XH, Ren F. Cover refinement of numerical manifold method for crack propagation simulation. Eng Anal Bound Elem. 2014;43:37–49.

    MATH  Google Scholar 

  16. Fan H, Zheng H, Li CG, He SM. A decomposition technique of generalized degrees of freedom for mixedmode crack problems. Int J Numer Methods Eng. 2017;112(7):803–31.

    MathSciNet  Google Scholar 

  17. Yang SK, Zhang JX, Ren XH, Zhang DF. Application of three-dimensional numerical manifold method to crack propagation. Rock Soil Mech. 2016;37(10):3017–25.

    Google Scholar 

  18. Yang YT, Tang XH, Zheng H, Liu QS, He L. Three-dimensional fracture propagation with numerical manifold method. Eng Anal Bound Elem. 2016;72:65–77.

    MathSciNet  MATH  Google Scholar 

  19. Yang SK, Cao MS, Ren XH, Ma GW, Zhang JX, Wang HJ. 3D crack propagation by the numerical manifold method. Comput Struct. 2018;194(1):116–29.

    Google Scholar 

  20. Zhang ZR, Zhang XW, Yan JH. Manifold method coupled velocity and pressure for Navier–Stokes equations and direct numerical solution of unsteady incompressible viscous flow. Comput Fluids. 2010;39(8):1353–65.

    MathSciNet  MATH  Google Scholar 

  21. Zhang ZR, Zhang XW. Direct simulation of low-Re flow around a square cylinder by numerical manifold method for Navier–Stokes equations. J Appl Math. 2012;2012:465972.

    MathSciNet  MATH  Google Scholar 

  22. Yang YT, Zheng H. Direct approach to treatment of contact in numerical manifold method. Int J Geomech. 2017;17(5):E4016012.

  23. Jiang QH, Zhou CB, Zhang Y. A model of point-to-face contact for three-dimensional numerical manifold method. Chin J Comput Mech. 2006;23(5):569–72.

    Google Scholar 

  24. He L, An XM, Zhao ZY. Development of contact algorithm for three-dimensional numerical manifold method. Int J Numer Methods Eng. 2014;97(6):423–53.

    MATH  Google Scholar 

  25. He L, An XM, Ma GW, Zhao ZY. Development of three-dimensional numerical manifold method for jointed rock slope stability analysis. Int J Rock Mech Min Sci. 2013;64:22–35.

    Google Scholar 

  26. He L, An XM, Zhao XB, Zhao ZY. Investigation on strength and stability of jointed rock mass using three-dimensional numerical manifold method. Int J Numer Anal Methods Geomech. 2013;37(14):2348–66.

    Google Scholar 

  27. Jiang QH, Wang SF. Three-dimensional numerical manifold method simulation of anchor bolt-supported rockmass. Chin J Rock Mech Eng. 2006;25(3):528–32.

    Google Scholar 

  28. Zhang YH, Sheng Q, Cheng YM. Three-dimensional numerical manifold method based on hexahedron element with full first-order cover function and its application in underground excavation. Key Eng Mater. 2007;340–341:365–70.

    Google Scholar 

  29. Zhou XY, Deng AF. Nonlinear analysis of three-dimensional numerical manifold method with hexahedron finite covers. Rock Soil Mech. 2010;31(7):2276–82.

    Google Scholar 

  30. Liu GY, Zhuang XY, Cui ZQ. Three-dimensional slope stability analysis using independent cover based numerical manifold and vector method. Eng Geol. 2017;225(20):83–95.

    Google Scholar 

  31. Jiang QH, Deng SS, Zhou CB. Study of three-dimensional high-order numerical manifold method. Rock Soil Mech. 2006;27(9):1471–4.

    Google Scholar 

  32. Fan H, Zhao JD, Zheng H. A high-order three-dimensional numerical manifold method enriched with derivative degrees of freedom. Eng Anal Bound Elem. 2017;83:229–41.

    MathSciNet  MATH  Google Scholar 

  33. Wu YQ, Chen GQ, Jiang ZS, Zhang L, Zhang H, Fan FS, et al. Research on fault cutting algorithm of the three-dimensional numerical manifold method. Int J Geomech. 2017;17(5):E4016003.

  34. Fan H, Zheng H, He SM. S-R decomposition based numerical manifold method. Comput Methods Appl Mech Eng. 2016;304(1):452–78.

    MathSciNet  MATH  Google Scholar 

  35. Wei W, Jiang QH. A modified numerical manifold method for simulation of finite deformation problem. Appl Math Model. 2017;48:673–87.

    MathSciNet  Google Scholar 

  36. Jiang QH, Zhou CB. Three-dimensional numerical manifold method with tetrahedron finite element covers. Chin J Rock Mech Eng. 2005;24(24):4455–60.

    Google Scholar 

  37. Cheng YM, Zhang YH. Formulation of a three-dimensional numerical manifold method with tetrahedron and hexahedron elements. Rock Mech Rock Eng. 2008;41(4):601–28.

    Google Scholar 

  38. Jiang QH, Zhou CB, Li DQ. A three-dimensional numerical manifold method based on tetrahedral meshes. Comput Struct. 2009;87(13–14):880–9.

    Google Scholar 

  39. He L, Ma GW. Development of 3D numerical manifold method. Int J Comput Methods. 2010;7(1):107–29.

    MathSciNet  MATH  Google Scholar 

  40. Cheng RM, Zhang YH. Application and discussion of three-dimensional numerical manifold method based on hexahedron element. Chin J Rock Mech Eng. 2004;23:1745–54.

    Google Scholar 

  41. Luo SM, Zhang XW, Lu WG, Jiang DR. Theoretical study of three-dimensional numerical manifold method. Appl Math Mech Ed. 2005;26(9):1126–31.

    MATH  Google Scholar 

  42. Luo SM, Zhang XW, Jiang DR. Object-oriented design of three-dimensional numerical manifold method. J Chongqing Univ Sci Ed. 2003;26:10–4.

    Google Scholar 

  43. Peng ZQ, Ge XR. Implementation of numerical manifold method by using 3D twenty-node iso-parametric element meshes of FEM. Chin J Rock Mech Eng. 2004;23:2622–7.

    Google Scholar 

  44. Belytschko T, Liu WK, Moran B, Elkhodary KI. Nonlinear finite elements for continua and structures. 2nd ed. Hoboken: Wiley; 2014.

    MATH  Google Scholar 

  45. Zienkiewicz OC, Taylor RL. The finite element method for solid and structural mechanics. Amsterdam: Elsevier; 2014.

    MATH  Google Scholar 

  46. Bathe KJ. Finite element procedures. Upper Saddle River: Prentice Hall; 2006.

    MATH  Google Scholar 

  47. Biot MA. Mechanics of incremental deformations: theory of elasticity and viscoelasticity of initially stressed solids and fluids. Hoboken: Wiley; 1965.

    Google Scholar 

  48. Bonet J, Wood RD. Nonlinear continuum mechanics for finite element analysis. Cambridge: Cambridge University Press; 2008.

    MATH  Google Scholar 

  49. Gadala MS, Wang J. Simulation of metal forming processes with finite element methods. Int J Numer Methods Eng. 1999;44(10):1397–428.

    MATH  Google Scholar 

  50. McMeeking RM, Rice JR. Finite-element formulations for problems of large elastic-plastic deformation. Int J Solids Struct. 1975;11(5):601–16.

    MATH  Google Scholar 

  51. Hughes TJR. Numerical implementation of constitutive models: rate-independent deviatoric plasticity. In: Nemat-Nasser S, Asa-ro RJ, Hegemier GA, editors. Theoretical foundation for large-scale computations for nonlinear material behavior, vol. 6. Springer: Dordrecht; 1983. p. 29–57.

    Google Scholar 

  52. Yu MH. Unified strength theory and its applications. 2nd ed. Berlin: Springer; 2018.

    MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Basic Research Program of China (973 Program, Grant No. 2014CB047100) and the National Natural Science Foundation of China (Grant Nos. 41472289, 51179185 and 41807275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfu Ke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, J., Wang, S. A Modified Symmetric and Antisymmetric Decomposition-Based Three-Dimensional Numerical Manifold Method for Finite Elastic–Plastic Deformations. Acta Mech. Solida Sin. 33, 71–97 (2020). https://doi.org/10.1007/s10338-019-00133-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00133-3

Keywords

Navigation