Skip to main content

Advertisement

Log in

Effects of Bio-Bor Fertilizer Applications on Fruit Yield, Antioxidant Enzyme Activity and Freeze Injury of Strawberry

Auswirkungen von Bio-Bor Düngeanwendungen auf Fruchtertrag, antioxidative Enzym-Aktivität und Frostschäden bei Erdbeeren

  • Original Article
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Deficiency of Boron (B) is widespread in the many parts of region of Turkey. So, the effects of boron and plant growth promoting bacteria (Bio-B) on the fruit yield, antioxidant enzyme activity and plant freeze injury of strawberry cv. Fern were investigated under field conditions between 2013 and 2014. The experimental plot was a completely randomized design with 4 replicates. Control and Bio-B were used as fertilizer agent in the experiment. Bio-B fertilizer was applied in three methods as soil, foliar and soil + foliar application methods to strawberry plants. Data through 2 years showed that the use of Bio-B significantly increased fruit yield, antioxidant enzyme activity and decreased freeze injury of strawberry leaf. Soil + foliar applications of Bio-B fertilizer increased to fruit yield compared to the control by 55.91 %. However, foliar application of Bio-B fertilizer increased to catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) enzyme activity compared with the control treatment 41.86 %, 48.99 %, and 26.59 %, respectively and decreased freeze injury of strawberry leaves 27.41 %. Overall, the results of this study suggest that Bio-B fertilizer application have the potential to increase the yield, antioxidant enzyme activity and decreased freeze injury of strawberry plants under field conditions.

Zusammenfassung

Bormangel (B) ist in vielen Regionen der Türkei weit verbreitet. Demzufolge wurden die Auswirkungen der Ausbringung von Bor und wachstumsfördernden Bakterien (Bio-B) auf den Fruchtertrag, die antioxidative Enzym-Aktivität und auf Frostschäden bei Erdbeerpflanzen der Sorte „Fern“ in den Jahren 2013 und 2014 unter Feldbedingungen untersucht. Als Versuchsanordnung wurde eine vollständig randomisierte Anlage mit 4 Wiederholungen gewählt. Die Düngevarianten in diesem Versuch waren die Kontrolle und die Applikation von Bio-B. Der Bio-B-Dünger wurde den Erdbeerpflanzen in 3 Ausbringungsvarianten verabreicht: über den Boden, über das Blatt und über Boden und Blatt. Die Auswertungen während der beiden Versuchsjahre zeigten, dass die Anwendung von Bio-B den Fruchtertrag und die antioxidative Enzym-Aktivität erhöhte und Frostschäden an den Blättern verminderte. Die Anwendung des Bio-B-Düngers über Boden und Blatt erhöhte den Fruchtertrag, verglichen mit der Kontrolle, um 55,91 %. Die Blattapplikation allein verbesserte, verglichen mit der Kontrolle, die Enzymaktivität von Katalase (CAT), Peroxidase (POD) und Superoxid Dismutase (SOD) jeweils um 41,86 %, 48,99 % und 26,59 % und verminderte den Frostschaden an den Erdbeer-Blättern um 27,41 %. Insgesamt lässt sich anhand der Ergebnisse dieser Studie feststellen, dass die Anwendung von Bio-B-Dünger grundsätzlich die Erntemenge und die antioxidative Enzym-Aktivität erhöhen und die Frostschäden an Erdbeer-Blättern vermindern kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aslantas R, Cakmakci R, Sahin F (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Hortic 111:371–377

    Article  Google Scholar 

  • Badek B, Napiorkowska B, Masny A, Korbin M (2014) Changes in the expression of three cold-regulated genes in “Elsanta” and “Selvik” strawberry (Fragaria × ananassa) plants exposed to freezing. J Horticul Res 22(2):53–61

    CAS  Google Scholar 

  • Bassil E, Hu H, Brown PH (2004) Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant Physiol 136:3383–3395

    Article  CAS  PubMed Central  Google Scholar 

  • Biemelt S, Keetman U, Mock HP, Grimm B (2000) Expression and activity of isoenzymes superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant Cell Environ 23:135–144

    Article  CAS  Google Scholar 

  • Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. App Microb Biot 65:497–503

    Article  CAS  Google Scholar 

  • Bragg NC, Chambers BJ, Davies JS, Richards IR (2008) The effects of increasing levels of boron on the growth and yield of strawberries grown in peat-based systems. Acta Hortic 779:205–212

    Article  Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Bartels JM, Bigham JM (eds) Chemical Methods. Methods of Soil Analysis, vol 3. The Soil Science Society of America and the American Society of Agronomy, Madison, pp 1085–1121

    Google Scholar 

  • Bulut S (2013) Evaluation of yield and quality parameters of phosphorous-solubilizing and N‑fixing bacteria inoculated in wheat (Triticum aestivum L.). Turk J Agric 37:545–554

    Article  CAS  Google Scholar 

  • Ceyhan E, Onder M, Harmankaya M, Hamurcu M, Gezgin S (2007) Response of chickpea cultivars to application of boron in boron-deficient calcareous soils. Commun Soil Sci Plant Anal 38:2381–2399

    Article  CAS  Google Scholar 

  • Chen WP, Li PH (2002) Attenuation of reactive oxygen production during chilling in ABA-treated maize cultured cells. In: Li C, Palva ET (eds) Plant cold hardiness. Kluwer Academic Publishers, Dordrecht, pp 223–233

    Chapter  Google Scholar 

  • Davis JM, Sanders DC, Nelson PV, Lengnick L, Sperry WJ (2003) Boron improves the growth, yield, quality and nutrient content of tomato. J Amer Soc Hort Sci 128:441–446

    CAS  Google Scholar 

  • Dhindsa RS, Plump-Dhindsa P, Thorpe TA (1981) Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32:93–101.

    Article  CAS  Google Scholar 

  • Dursun A, Turan M, Ekinci M, Gunes A, Ataoglu N, Esringu A, Yildirim E (2010) Effects of boron fertilizer on tomato, pepper, and cucumber yields and chemical composition. Commun Soil Sci Plant Anal 41:1576–1593

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Eco 36:184–189

    Article  Google Scholar 

  • Esitken A, Ercisli S, Karlidag H, Sahin F (2005) Potential use of plant growth promoting rhizobacteria (PGPR) in organic apricot production. In: Libek A, Kaufmane E, Sasnauskas A (eds) Proceedings of the international scientific conference of environmentally friendly fruit growing, pp 90–97

    Google Scholar 

  • Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110:324–327

    Article  CAS  Google Scholar 

  • Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124:62–66

    Article  CAS  Google Scholar 

  • Esringu A, Turan M, Gunes A, Esitken A, Sambo P (2011) Boron application improves on yield and chemical composition of strawberry. Acta Agric Scand Section B Soil Plant Sci 61:245–252

    CAS  Google Scholar 

  • Fisher P (2004) Cold acclimation in strawberries. N Y Berry News 3:11

    Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonas. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  • Gunes A, Ataoglu N, Turan M, Esitken A, Ketterings QM (2009) Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. J Plant Nutr Soil Sc 172:385–392

    Article  CAS  Google Scholar 

  • Gunes A, Turan M, Gulluce M, Sahin F (2014) Nutritional content analysis of plant growth-promoting rhizobacteria species. European J Soil Biol 60:88–97

    Article  CAS  Google Scholar 

  • Guy C (1999) The influence of temperature extremes on gene expression, genomic structure, and the evolution of induced tolerance in plants. In: Lerner HR (ed) Plants responses to environmental stresses from phytohormones to genome reorganization. Marcel Dekker, Inc., New York, Basel, pp 497–548

    Google Scholar 

  • Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    Article  CAS  PubMed Central  Google Scholar 

  • Huang L, Ye Z, Bell RW, Dell B (2005) Boron nutrition and chilling tolerance of warm climate crop species. Ann Bot 96:755–767

    Article  CAS  PubMed Central  Google Scholar 

  • Janska A, Marsik P, Zelenkova S, Ovesna J (2010) Cold stress and acclimation – what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  CAS  Google Scholar 

  • Kang H, Saltveit ME (2001) Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicals. Physiol Plant 113:548–556

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  CAS  PubMed  Google Scholar 

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic 114:16–20

    Article  CAS  Google Scholar 

  • Karlidag H, Esitken A, Yildirim E, Donmez MF, Turan M (2011) Effects of plant growth promoting bacteria (PGPB) on yield, growth, leaf water content, membrane permeability and ionic composition of strawberry under saline conditions. J Plant Nutr 34:34–45

    Article  CAS  Google Scholar 

  • Karlidag H, Yildirim H, Turan M, Pehluvan M, Donmez F (2013) Plant Growth-promoting Rhizobacteria Mitigate Deleterious Effects of Salt Stress on Strawberry Plants (Fragaria ×ananassa). Hortscience, 48:563–567

    Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Al T, Aydemir S (2015) Exogenously applied nitric oxide confers tolerance to salinity-induced oxidative stress in two maize (Zea mays L.) cultivars differing in salinity tolerance. Turkish J Agric For 39:909–919

    Article  Google Scholar 

  • Kaya C, Sonmez O, Aydemir S, Dikilitas M (2013) Mitigation effects of glycinebetaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turkish J Agric For 37:188–194

    CAS  Google Scholar 

  • Lindsay WL, Norwell WA (1978) Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am Proc 33:49–54

    Google Scholar 

  • Maas JL (1998) Compendium of strawberry diseases. 2nd edition. American Phytopathological Society, St. Paul, USA, pp 98

    Google Scholar 

  • Marentez E, Griffith M, Mlynarz A, Brus R (1993) Protein accumulate in the apoplast of winter rye leave during cold acclimation. Physiol Plantarum 87:799–507

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Maughan TL (2013) Optimizing systems for cold-climate strawberry production. Utah State University, Utah, p 137 (All Graduate Theses and Dissertations. Paper 2034)

    Google Scholar 

  • Maughan TL, Black B, Drost D (2015) Critical temperature for sublethal cold injury of strawberry leaves. Plants, Soils and Climate Student Research, vol. 1.

    Google Scholar 

  • McLean EO (1982) Soil pH and lime requirement. In: Page AL, Miller RH, Keeney DR (eds) Chemical and microbiological properties, 2nd edn. Methods of Soil Analysis, vol 2. ASA SSSA Publisher, Madison, pp 199–224

    Google Scholar 

  • Mia MAB, Shamsuddin ZH, Mahmood M (2012) Effects of rhizobia and plant growth promoting bacteria inoculation on germination and seedling vigor of lowland rice. Afr J Biotechnol 11:3758–3765

    Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14(3):5312–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DW, Sommers LE (1982) Organic matter. In: Page AL, Miller RH, Keeney DR (eds) Chemical and microbiological properties, 2nd edn. Methods of Soil Analysis, vol 2. ASA SSSA Publisher, Madison, pp 574–579

    Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA, Washington, DC (Circ 939)

    Google Scholar 

  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43

    Article  CAS  Google Scholar 

  • Oyinlola EY (2007) Effect of boron fertilizer on yield and oil content of three sunflower cultivars in the Nigerian Savanna. J Agron 6:421–426

    Article  CAS  Google Scholar 

  • Pietiläinen P (1984) Foliar nutrient content and 6‑phosphogluconate dehydrogenase activity in vegetative buds of Scots pine on a growth disturbance area. Commun Instituti For Fenniae 123:1–18

    Google Scholar 

  • Raisanen M, Repo T, Lehto T (2009) Cold acclimation of Norway spruce roots and shoots after boron fertilization. Silva Fennica 43(2):223–233

    Article  Google Scholar 

  • Rhoades JD (1996) Salinity: Electrical conductivity and total dissolved solids. In: Bartels JM, Bigham JM (eds) Chemical methods, 2nd edn. Methods of soil analysis, vol 3. ASA SSSA Publisher Agronomy. No. 5, Madison, pp 417–436

    Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162:897–904

    Article  CAS  Google Scholar 

  • Salas P, Litschmann T, Saskova H (2014) Minimum temperatures above different surfaces. In: Rožnovský J, Litschmann T (eds) Strawberry cultivation. Mendel a bioklimatologie, Brno, p 9

    Google Scholar 

  • Shokaeva DB (2008) Injures induced in different strawberry genotypes by winter freeze and their effect on subsequent yield. Plant Breed 127:197–202

    Article  Google Scholar 

  • Sonsteby A, Heide OM (2008) Temperature responses, flowering and fruit yield of the June-bearing strawberry cultivars Florence, Frida and Korona. Sci Hortic 119:49–54

    Article  Google Scholar 

  • Soil Survey Staff (2006) Keys to Soil Taxonomy. 10th ed. USDA. Washington, DC.

  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Chemical methods, 2nd edn. Methods of Soil Analysis, vol 3. ASA SSSA Publisher, Madison, pp 1201–1230 ((Agronomy))

    Google Scholar 

  • Taulavuori K, Prasad MNV, Taulavuori E, Laine K (2005) Metal stress consequences on frost hardiness of plants at northern high latitudes: A review and hypothesis. Environ Pollut 135:209–220

    Article  CAS  PubMed  Google Scholar 

  • Thomas GW (1982) Exchangeable cations. In: Page AL, Miller RH, Keeney DR (eds) Chemical and microbiological properties, 2nd edn. Methods of Soil Analysis, vol 2. ASA SSSA Publisher, Madison, pp 159–164 (Agronomy)

    Google Scholar 

  • Turan M, Ozgul M, Kocaman A (2007a) Freezing tolerance affected by mineral application during cold‐acclimated conditions in some cool crop seedlings. Comm Soil Sci Plant Analy 38:1047–1060

    Article  CAS  Google Scholar 

  • Turan M, Ataoglu N, Sahin F (2007b) Effects of Bacillus FS-3 on growth of tomato (Lycopersicon esculentum L.) plants and availability of phosphorus in soil. Plant Soil Environ 53:58–64

    CAS  Google Scholar 

  • Turan M, Ataoglu N, Gunes A, Oztas T, Dursun A, Ekinci M, Ketterings QM, Huang YM (2009) Yield and chemical composition of brussels sprout (Brassica oleracea L. gemmifera) as affected by boron management. HortScience 44:176–182

    Google Scholar 

  • Turan M, Gulluce M, Von Wiren N, Sahin F (2012) Yield promotion and phosphorus solubilization by plant promoting rhizobacteria in extensive wheat production. J Plant Nutr Soil Sc 175:818–826

    Article  CAS  Google Scholar 

  • Turan M, Ekinci M, Yildirim E, Gunes A, Karagoz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agric 38:327–333

    Article  CAS  Google Scholar 

  • Wolf B (1974) Improvements in the azomethine-H method for the determining of boron. Commun Soil Sci Plant Anal 5:39–44

    Article  CAS  Google Scholar 

  • Wang SY, Camp MJ (2000) Temperatures after bloom affect plant growth and fruit quality of strawberry. Sci Horticul 85:183–199

    Article  Google Scholar 

  • Wojcik P, Lewandowski M (2003) Effect of spray of calcium and boron on yield and quality of “Elsanta” strawberry. J Plant Nutr 3:671–682

    Article  Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:361–380

    Article  CAS  PubMed  Google Scholar 

  • Ye Z (2004) Effect of low temperature on boron nutrition of oilseed rape and sunflower. Division of Science and Engineering Murdoch University, Perth

    Google Scholar 

  • Yildirim E, Turan M, Donmez MF (2008) Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Romanian Biotec Lett 13:3933–3943

    Google Scholar 

  • Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F (2011) Growth, nutrient uptake and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. Hort Sci 46:932–936

    CAS  Google Scholar 

  • Zavala JFA, Wang SY, Wang CY, Aguilar GAG (2004) Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. Leb U‑technol 37:687–695

    Google Scholar 

Download references

Acknowledgements

We are grateful to the project of Research and Development of Industry Minister (Project number: 01194.STZ.2012-1) for their generous financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adem Gunes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunes, A., Turan, M., Kitir, N. et al. Effects of Bio-Bor Fertilizer Applications on Fruit Yield, Antioxidant Enzyme Activity and Freeze Injury of Strawberry. Erwerbs-Obstbau 58, 177–184 (2016). https://doi.org/10.1007/s10341-016-0274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-016-0274-x

Keywords

Schlüsselwörter

Navigation