Skip to main content
Log in

New procedure for the simulation of belowground competition can improve the performance of forest simulation models

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The major part of existing models of belowground competition in mixed forest stands is limited in explaining the spatial distribution of roots as a response to competitive pressure from neighbours and heterogeneity of soil properties. We are presenting a new spatially explicit and multi-layered discrete model of belowground competition, RootInt (ROOTs INTake). It describes spatial distribution of belowground biomass and allows simulation of competition between trees for soil nutrients. The tree-specific area of root zone is calculated on the basis of stem diameter, with site-specific modifiers to account for the effect of soil fertility and moisture. The shape of root zone is dependent on the amount of available nitrogen in the current cell, distance between this cell and the stem base, and the mass of roots of other plants. RootInt was incorporated into ecosystem model EFIMOD to refine the existing description of belowground competition in forest stands with multiple cohorts and tree species. The results of simulation showed that bringing more complexity into structure of stand (including initial spatial locations of trees, species composition and age structure, vertical structure of canopy) resulted in higher spatial variation in competition intensity, as well as in higher rates of resource uptake. This indicates that stands with complex canopy structure had high plasticity in their root systems and were adapted to intensive competition for soil resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrazhko MA (1982) The response of spruce fine roots on excluding of belowground competition from neighbouring trees [Reakcija tonkih kornej eli na iskljuchenie kornevoj konkurencii sosednih derev’ev]. Lesovedenie 6:41–46 (In Russian)

    Google Scholar 

  • Adler RJ (1981) The geometry of random fields. SIAM-Society for Industrial and Applied Mathematics, Philadelphia, p 280

    Google Scholar 

  • Ammer C, Wagner S (2005) An approach for modelling the mean fine-root biomass of Norway spruce stands. Trees 19:145–153

    Article  Google Scholar 

  • Baneva NA (1980) Changes in mass of spruce fine roots in pure stands [Izmenenie massy melkih kornej eli v chistyh drevostojah]. Lesovedenie 1:86–89 (In Russian)

    Google Scholar 

  • BassiriRad H (2005) Nutrient acquisition by plants: an ecological perspective. Ecological Studies, Vol. 181. Springer, p 348

  • Bezrukova MG, Shanin VN, Mikhailov AV, Mikhailova NV, Khoraskina YS, Grabarnik PY, Komarov AS (2012) DLES: a component-based framework for ecological modeling. In: Jordan F, Jørgensen SE (eds) Models of the ecological hierarchy: from molecules to the ecosphere. Developments in environmental modelling series, V.25. Elsevier Science, Amsterdam, pp 331–354

    Chapter  Google Scholar 

  • Bielak K, Dudzińska M, Pretzsch H (2014) Mixed stands of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst] can be more productive than monocultures. Evidence from over 100 years of observation of long-term experiments. For Syst 23:573–789

    Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J-W, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20(1):30–59

    Article  CAS  PubMed  Google Scholar 

  • Bobkova KS (1971) The structure of root systems of tree species in different types of pine forests of Zelenoborsky station [Stroenie kornevyh sistem drevesnyh porod v razlichnyh tipah sosnovyh lesov Zelenoborskogo stacionara]. Proc Komi Branch Acad Sci USSR 24:52–69 (In Russian)

    Google Scholar 

  • Bolte A, Villanueva I (2006) Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur J For Res 125(1):15–26

    Article  Google Scholar 

  • Brandtberg P-O, Bengtsson J, Lundkvist H (2004) Distributions of the capacity to take up nutrients by Betula spp. and Picea abies in mixed stands. For Ecol Manage 198:193–208

    Article  Google Scholar 

  • Brassard BW, Chen HYH, Bergeron Y, Paré D (2011) Differences in fine root productivity between mixed- and single-species stands. Funct Ecol 25:238–246

    Article  Google Scholar 

  • Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Børja I, Eldhuset TD, Helmisaari H-S, Jourdan C, Konôpka B, López BC, Pérez CM, Persson H, Ostonen I (2013) Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant Soil 362:357–372

    Article  CAS  Google Scholar 

  • Burton AJ, Pregitzer KS, Hendrick RL (2000) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125:389–399

    Article  Google Scholar 

  • Butterbach-Bahl K, Gundersen P, Ambus P, Augustin J, Beier C, Boeckx P, Dannermann M, Gimenso BS, Kiese R, Kitzler B, Ibrom A, Rees RM, Smith KA, Stevens C, Vesala T, Zechmeister-Boltenstern S (2011) Nitrogen processes in terrestrial ecosystems. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, van Grinsven H, Grizzetti B (eds) The European nitrogen assessment: sources, effects, and policy perspectives. Cambridge University Press, Cambridge, pp 99–125

    Chapter  Google Scholar 

  • Cadisch G, de Willigen P, Suprayogo D, Mobbs DC, van Noordwijk M, Rowe EC (2004) Catching and competing for mobile nutrients in soils. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems: concepts and models with multiple plant components. CABI, Cabazon, pp 171–191

    Chapter  Google Scholar 

  • Campbell BD, Grime JP, Mackey JML, Jalili A (1991) A trade-off between scale and precision in resource foraging. Oecologia 87:532–538

    Article  Google Scholar 

  • Casper BB, Jackson RB (1997) Plant competition underground. Ann Rev Ecol Evol Syst 28:545–570

    Article  Google Scholar 

  • Casper BB, Schenk HJ, Jackson RB (2003) Defining a plant’s belowground zone of influence. Ecology 84(9):2313–2321

    Article  Google Scholar 

  • Cavard X, Bergeron Y, Chen HYH, Paré D, Laganière J, Brassard B (2011) Competition and facilitation between tree species change with stand development. Oikos 120:1683–1695

    Article  Google Scholar 

  • Chen H, Harmon ME, Griffiths RP (2001) Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific Northwest: a chronosequence approach. Can J For Res 31:246–260

    Article  CAS  Google Scholar 

  • Chertov OG, Komarov AS, Nadporozhskaya MA, Bykhovets SS, Zudin SL (2001) ROMUL—a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modelling. Ecol Model 138:289–308

    Article  CAS  Google Scholar 

  • Coomes DA, Grubb PJ (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol Monogr 70(2):171–207

    Article  Google Scholar 

  • Daniels RF, Burkhart HE, Clason TR (1986) A comparison of competition measures for predicting growth of loblolly pine trees. Can J For Res 16:1230–1237

    Article  Google Scholar 

  • Deckmyn G, Meyer A, Smits MM, Ekblad A, Grebenc T, Komarov A, Kraigher H (2014) Simulating ectomycorrhizal fungi and their role in carbon and nitrogen cycling in forest ecosystems. Can J For Res 44:535–553

    Article  CAS  Google Scholar 

  • DesRochers A, Lieffers VJ (2001) The coarse-root system of mature Populus tremuloides in declining stands in Alberta, Canada. J Veg Sci 12:355–360

    Article  Google Scholar 

  • Diggle P (1983) Statistical analysis of spatial point patterns. Academic Press, London, p 159

    Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A, Danjon F (2005) A density-based approach for the modelling of root architecture: application to maritime pine (Pinus pinaster Ait.) root systems. J Theor Biol 236:323–334

    Article  CAS  PubMed  Google Scholar 

  • Fahey TJ, Hughes JW (1994) Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. J Ecol 82:533–548

    Article  Google Scholar 

  • Feddes RA, Raats PAC (2004) Parameterizing the soil–water–plant root system. In: Feddes RA, de Rooij GH, van Dam JC (eds) Unsaturated-zone modeling: progress, challenges and applications. Wageningen UR Frontis Series, Vol. 6, XXII. pp 95–141

  • Finér L, Helmisaari H-S, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B, Kraigher H, Möttönen M-R, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141(3):394–405

    Article  Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y (2011a) Factors causing variation in fine root biomass in forest ecosystems. For Ecol Manage 261:265–277

    Article  Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y (2011b) Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. For Ecol Manage 262:2008–2023

    Article  Google Scholar 

  • Fransen B, de Kroon H, Berendse F (2001) Soil nutrient heterogeneity alters competition between two perennial grass species. Ecology 82(9):2534–2546

    Article  Google Scholar 

  • Gale MR, Grigal DF (1987) Vertical root distributions of northern tree species in relation to successional status. Can J For Res 17:829–834

    Article  Google Scholar 

  • Gao SY, Pan WL, Koenig RT (1998) Integrated root system age in relation to plant nutrient uptake activity. Agron J 90:505–510

    Article  CAS  Google Scholar 

  • Gärtner H, Wagner B, Heinrich I, Denier C (2009) 3D-laser scanning: a new method to analyze coarse tree root systems. For Snow Landsc Res 82:95–106

    Google Scholar 

  • Gayler S, Grams TEE, Kozovits AR, Winkler JB, Luedemann G, Priesack E (2006) Analysis of competition effects in mono- and mixed cultures of juvenile beech and spruce by means of the plant growth simulation model PLATHO. Plant Biol 8:503–514

    Article  CAS  PubMed  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Giniyatullin RKh, Kulagin AYu (2012) State of the roots system of the birch Betula pendula Roth. in the conditions of Sterlitamak industrial centre [Sostojanie kornevoj sistemy berezy povisloj (Betula pendula Roth.) v uslovijah Sterlitamakskogo promyshlennogo centra]. Bull Udmurt Univ 4:21–28 (In Russian)

    Google Scholar 

  • Goreaud F, Loreau M, Millier C (2002) Spatial structure and the survival of an inferior competitor: a theoretical model of neighbourhood competition in plants. Ecol Model 158:1–19

    Article  Google Scholar 

  • Graham BF, Bormann FH (1966) Natural root grafts. Bot Rev 32(3):255–292

    Article  Google Scholar 

  • Grime JP (2002) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, Chichester, p 417

    Google Scholar 

  • Gross K, Peters A, Pregitzer KS (1993) Fine root growth and demographic responses to nutrient patches in four old-field plant species. Oecologia 95:61–64

    Article  Google Scholar 

  • Grote R, Pretzsch H (2002) A model for individual tree development based on physiological processes. Plant Biol 4:167–180

    Article  Google Scholar 

  • Haefner JW, Poole GC, Dunn PV, Decker RT (1991) Edge effects in computer models of spatial competition. Ecol Model 56:221–244

    Article  Google Scholar 

  • Hansson K, Helmisaari H-S, Sah SP, Lange H (2013) Fine root production and turnover of tree and understorey vegetation in Scots pine, silver birch and Norway spruce stands in SW Sweden. For Ecol Manage 309:58–65

    Article  Google Scholar 

  • Hartmann P, von Wilpert K (2014) Fine-root distributions of Central European forest soils and their interaction with site and soil properties. Can J For Res 44:71–81

    Article  Google Scholar 

  • Helmisaari H-S, Makkonen K, Kellomäki S, Valtonen E, Mälkönen E (2002) Below- and above-ground biomass, production and nitrogen use in Scots pine stands in Eastern Finland. For Ecol Manage 165:317–326

    Article  Google Scholar 

  • Helmisaari H-S, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol 27:1493–1504

    Article  CAS  PubMed  Google Scholar 

  • Helmisaari H-S, Sah S, Aro L (2009) Fine roots on intensive forest ecosystem monitoring plots FIP4, FIP10 and FIP11 on Olkiluoto island in 2008. Finnish Forest Research Institute, Working Report 2009-127, p 33

  • Hendricks JJ, Nadelhoffer KJ, Aber JD (1993) Assessing the role of fine roots in carbon and nutrient cycling. Trends Ecol Evol 8(5):174–178

    Article  CAS  PubMed  Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, Chichester, p 560

    Google Scholar 

  • Jackson RB, Manwaring JH, Caldwell MM (1990) Rapid physiological adjustment of roots to localized soil enrichment. Nature 344:58–60

    Article  CAS  PubMed  Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488

    Article  CAS  PubMed  Google Scholar 

  • Jose S, Williams R, Zamora D (2006) Belowground ecological interactions in mixed-species forest plantations. For Ecol Manage 233:231–239

    Article  Google Scholar 

  • Kalela EK (1949) On the horizontal roots in pine and spruce stands I. Acta For Fenn 57(2):1–79

    Google Scholar 

  • Kalela EK (1954) Pine seed trees and tree root relations [Mäntysiemenpuiden ja puustojen juurisuhteista]. Acta For Fenn 61(28):1–17 (In Finnish)

    Google Scholar 

  • Kalliokoski T (2011) Root system traits of Norway spruce, Scots pine, and silver birch in mixed boreal forests: an analysis of root architecture, morphology, and anatomy. Dissertation, Dissertationes Forestales 121. Vantaa, p 67

  • Kalliokoski T, Nygren P, Sievänen R (2008) Coarse root architecture of three boreal tree species growing in mixed stands. Silva Fenn 42(2):189–210

    Article  Google Scholar 

  • Kalliokoski T, Sievänen R, Nygren P (2010) Tree roots as self-similar branching structures: axis differentiation and segment tapering in coarse roots of three boreal forest tree species. Trees 24:219–236

    Article  Google Scholar 

  • Komarov AS, Chertov OG, Zudin SL, Nadporozhskaya MA, Mikhailov AV, Bykhovets SS, Zudina EV, Zoubkova EV (2003) EFIMOD 2—a model of growth and cycling of elements in boreal forest ecosystems. Ecol Model 70:373–392

    Article  CAS  Google Scholar 

  • Külla T, Lõhmus K (1999) Influence of cultivation method on root grafting in Norway spruce (Picea abies (L.) Karst.). Plant Soil 217:91–100

    Article  Google Scholar 

  • Laitakari E (1929) The root system of pine (Pinus silvestris): a morphological investigation [Männyn juuristo. Morfologinen tutkimus.]. Acta For Fenn 33(1):1–380 (In Finnish)

    Google Scholar 

  • Laitakari E (1935) The root system of birch (Betula verrucosa and odorata) [Coivun juuristo]. Acta For Fenn 41(2):1–217 (In Finnish)

    Google Scholar 

  • Laschinkiy NN (1981) Structure and dynamics of pine forests of the Lower Angara region [Struktura i dinamika sosnovyh lesov Nizhnego Priangar’ja]. Nauka, Novosibirsk, p 272 (In Russian)

    Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Lebedev EV (2012) Productivity of the white birch organisms in the process of ontogenesis in the European part of Russia [Produktivnost’ berezy beloj na urovne organizma v ontogeneze v evropejskoj chasti Rossii]. Izvestia Orenburg State Agrarian University 4(36):18–22 (In Russian)

    Google Scholar 

  • Lebedev VM, Lebedev EV (2012) The relationship between biological productivity and nutritional activity of roots of conifers in Russian south taiga [Vzaimosvjaz’ biologicheskoj produktivnosti i poglotitel’noj dejatel’nosti kornej hvojnyh porod v ontogeneze v zone juzhnoj tajgi Rossii]. Agrohimija 8:9–17 (In Russian)

    Google Scholar 

  • Lõhmus K, Ivask M (1995) Decomposition and nitrogen dynamics of fine roots of Norway spruce (Picea abies (L.) Karst.) at different sites. Plant Soil 168–169:89–94

    Article  Google Scholar 

  • Lozinov GL (1980) Features of spatial distribution of underground parts of plants in forest biogeocoenoses of Moscow region [Osobennosti prostranstvennogo raspredelenija podzemnyh chastej rastenij v lesnyh biogeocenozah Podmoskov’ja]. Lesovedenie 1:58–63 (In Russian)

    Google Scholar 

  • Majdi H, Persson H (1993) Spatial distribution of fine roots, rhizosphere and bulk-soil chemistry in an acidified Picea abies stand. Scand J For Res 8:147–155

    Article  Google Scholar 

  • Mälkönen E (1974) Annual primary production and nutrient cycle in some Scots pine stands. Finnish Forest Research Institute, Helsinki 87 p

    Google Scholar 

  • Mälkönen E (1977) Annual primary production and nutrient cycle in a birch stand. Finnish Forest Research Institute, Helsinki 35 p

    Google Scholar 

  • Mao Z, Saint-André L, Bourrier F, Stokes A, Cordonnier T (2015) Modelling and predicting the spatial distribution of tree root density in heterogeneous forest ecosystems. Ann Bot 116(2):261–277

    Article  PubMed  Google Scholar 

  • Marklund LG (1988) Biomass functions for pine, spruce and birch in Sweden [Biomassafunktioner för tall, gran och björk i Sverige]. Department of Forest Survey. Swedish University of Agricultural Sciences, Umeå, Rep. No. 45, p 73 (In Swedish)

  • Melin Y, Petersson H, Nordfjell T (2009) Decomposition of stump and root systems of Norway spruce in Sweden: a modelling approach. For Ecol Manage 257:1445–1451

    Article  Google Scholar 

  • Meyer A, Grote R, Butterbach-Bahl K (2012) Integrating mycorrhiza in a complex model system: effects on ecosystem C and N fluxes. Eur J For Res 131:1809–1831

    Article  CAS  Google Scholar 

  • Miina J, Pukkala T (2002) Application of ecological field theory in distance-dependent growth modelling. For Ecol Manage 161:101–107

    Article  Google Scholar 

  • Müller KH, Wagner S (2003) Fine root dynamics in gaps of Norway spruce stands in the German Ore Mountains. Forestry 76(2):149–158

    Article  Google Scholar 

  • O’Brien EE, Brown JS, Moll JD (2007) Roots in space: a spatially explicit model for below-ground competition in plants. Proc R Soc B 274:929–934

    Article  PubMed Central  PubMed  Google Scholar 

  • Ostonen I, Lõhmus K, Helmisaari H-S, Truu J, Meel S (2007) Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol 27:1627–1634

    Article  PubMed  Google Scholar 

  • Pagès L, Doussan C, Vercambre G (2000) An introduction on below-ground environment and resource acquisition, with special reference on trees. Simulation models should include plant structure and function. Ann For Sci 57:513–520

    Article  Google Scholar 

  • Park BB, Yanai RD, Fahey TJ, Bailey SW, Siccama TG, Shanley JB, Cleavitt NL (2008) Fine root dynamics and forest production across a calcium gradient in northern hardwood and conifer ecosystems. Ecosystems 11:325–341

    Article  CAS  Google Scholar 

  • Persson H, von Fircks Y, Majdi H, Nilsson LO (1995) Root distribution in a Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium-sulphate application. Plant Soil 168–169:161–165

    Article  Google Scholar 

  • Petersson H, Ståhl G (2006) Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scand J For Res 21(7):84–93

    Article  Google Scholar 

  • Piñeiro G, Perelman S, Guerschman JP, Paruelo JM (2008) How to evaluate models: Observed versus predicted or predicted versus observed? Ecol Model 216:316–322

    Article  Google Scholar 

  • Pretzsch H, Schütze G (2014) Size-structure dynamics of mixed versus pure forest stand. Forest Syst 23(3):560–572

    Article  Google Scholar 

  • Pretzsch H, Heym M, Pinna S, Schneider R (2014) Effect of variable retention cutting on the relationship between growth of coarse roots and stem of Picea mariana. Scan J For Res 29:222–233

    Google Scholar 

  • Pretzsch H, del Río M, Ammer Ch, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski H, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134:927–947

    Article  Google Scholar 

  • Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands: a review. For Ecol Manage 175:253–273

    Article  Google Scholar 

  • Püttsepp Ü, Lõhmus K, Persson HÅ, Ahlström K (2006) Fine-root distribution and morphology in an acidic Norway spruce (Picea abies (L.) Karst.) stand in SW Sweden in relation to granulated wood ash application. For Ecol Manage 221:291–298

    Article  Google Scholar 

  • Raynaud X, Leadley PW (2005) Symmetry of belowground competition in a spatially explicit model of nutrient competition. Ecol Model 189:447–453

    Article  Google Scholar 

  • Roose T (2000) Mathematical model of plant nutrient uptake. Dissertation, Linacre College, University of Oxford, Michaelmas, p 226

  • Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870

    Article  Google Scholar 

  • Salas E, Ozier-Lafontaine H, Nygren P (2004) A fractal model applied for estimating root biomass and architecture in two tropical legume tree species. Ann For Sci 61:337–345

    Article  Google Scholar 

  • Sannikov SN, Sannikova NS (2014) Forest as underground-closed dendrocenoecosystem [Les kak podzemno-somknutaja dendrocenojekosistema]. Sibirskiy lesnoy zhurnal 1:25–34 (In Russian)

    Google Scholar 

  • Schenk MK (1996) Regulation of nitrogen uptake on the whole plant level. Plant Soil 181:131–137

    Article  CAS  Google Scholar 

  • Schiffers K, Tielbörger K, Tietjen B, Jeltsch F (2011) Root plasticity buffers competition among plants: theory meets experimental data. Ecology 92(3):610–620

    Article  PubMed  Google Scholar 

  • Schlather M (2001) Simulation and analysis of random fields. R News 1(2):18–20

    Google Scholar 

  • Schmid I (2002) The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech. Basic Appl Ecol 3:339–346

    Article  Google Scholar 

  • Schmid I, Kazda M (2002) Root distribution of Norway spruce in monospecific and mixed stands on different soils. For Ecol Manage 159(1–2):37–47

    Article  Google Scholar 

  • Seidl R, Rammer W, Scheller RM, Spies TA (2012) An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol Model 231:87–100

    Article  Google Scholar 

  • Shanin VN (2015) The analysis of lateral spreading of tree roots in different forest types. [Analiz gorizontal’nogo rasprostranenija kornej derev’ev v raznyh tipah lesa]. Lesovedenie 2:130–139 (In Russian)

    Google Scholar 

  • Shanin VN, Komarov AS, Mäkipää R (2014) Tree species composition affects productivity and carbon dynamics of different site types in boreal forests. Eur J For Res 133:273–286

    Article  Google Scholar 

  • Shanin VN, Rocheva LK, Shashkov MP, Ivanova NV, Moskalenko SV, Burnasheva ER (2015) Spatial distribution of root biomass of certain tree species (Picea abies, Pinus sylvestris, Betula sp.). Biol Bull 42(3):260–268

    Article  Google Scholar 

  • Shestibratov K, Lebedev V, Podrezov A, Salmova M (2011) Transgenic aspen and birch trees for Russian plantation forests. BMC Proc 5(Suppl 7):P124

    Article  PubMed Central  Google Scholar 

  • Shvidenko A, Shchepashchenko DG, Nilsson S, Buluy YI (2008) Tables and models of growth and productivity of forests of major forest forming species of Northern Eurasia (standard and reference materials). Federal Agency of Forest Management, Moscow, p 886

    Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419

    Article  Google Scholar 

  • Šimůnek J, Hopmans JW (2009) Modeling compensated root water and nutrient uptake. Ecol Model 220:505–521

    Article  Google Scholar 

  • Smith M, Burgess SSO, Suprayogo D, Lusiana B, Widianto H (2004) Uptake, partitioning and redistribution of water by roots in mixed-species agroecosystems. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems: concepts and models with multiple plant components. CABI, Cabazon, pp 157–170

    Chapter  Google Scholar 

  • Sperry JS, Adler ER, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347–359

    Article  Google Scholar 

  • Strong WL, LaRoi GH (1985) Root density—soil relationships in selected boreal forests of central Alberta, Canada. For Ecol Manage 12:233–251

    Article  Google Scholar 

  • Tamm CO (1991) Nitrogen in terrestrial ecosystems. Springer-Verlag, Berlin-Heidelberg, p 115

    Book  Google Scholar 

  • Tanskanen N, Ilvesniemi H (2007) Spatial distribution of fine roots at ploughed Norway spruce forest sites. Silva Fenn 41(1):45–54

    Article  Google Scholar 

  • Tarroux E, DesRochers A (2010) Frequency of root grafting in naturally and artificially regenerated stands of Pinus banksiana: influence of site characteristics. Can J For Res 40:861–871

    Article  Google Scholar 

  • Tarroux E, DesRochers A, Krause C (2010) Effect of natural root grafting on growth response of jack pine (Pinus banksiana) after commercial thinning. For Ecol Manage 260:526–535

    Article  Google Scholar 

  • Tarroux E, DesRochers A, Tremblay F (2014) Molecular analysis of natural root grafting in jack pine (Pinus banksiana) trees: How does genetic proximity influence anastomosis occurrence? Tree Genet Genomes 10:667–677

    Article  Google Scholar 

  • Terekhov GG, Usoltsev VA (2010) Morphological structure of plantations and root density in the rhizosphere of spruce plantations and secondary deciduous stand on Middle Ural as a characteristics of competition [Morfostruktura nasazhdenij i kornenasyshhennost’ rizosfery kul’tur eli sibirskoj i vtorichnogo listvennogo drevostoja na Srednem Urale kak harakteristika ih konkurentnyh otnoshenij]. Hvojnye boreal’noj zony XXVII(3–4):330–335 (In Russian)

    Google Scholar 

  • Tobin B, Čermák J, Chiatante D, Danjon F, di Iorio A, Dupuy L, Eshel A, Jourdan C, Kalliokoski T, Laiho R, Nadezhdina N, Nicoll B, Pagès L, Silva J, Spanos I (2007) Towards developmental modelling of tree root systems. Plant Biosyst 141(3):481–501

    Article  Google Scholar 

  • Urban J, Čermák J, Ceulemans R (2015) Above- and below-ground biomass, surface and volume, and stored water in a mature Scots pine stand. Eur J For Res 134:61–74

    Article  CAS  Google Scholar 

  • van Wijk MT, Rodriguez-Iturbe I (2002) Tree-grass competition in space and time: insights from a simple cellular automata model based on ecohydrological dynamics. Water Resour Res 38(9):18-1–18-15

    Article  Google Scholar 

  • Verkholantseva LA, Bobkova KS (1972) The effect of soil environment of root systems of tree species in spruce plantations in Northern taiga [Vlijanie pochvennyh uslovij na kornevye sistemy drevesnyh porod v elovyh nasazhdenijah podzony severnoj tajgi]. Scientific reports 6, Syktyvkar, p 56 (In Russian)

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vomperskiy SE (1959) Specific features of structure of root systems in Pinus sylvestris L. on drained peaty soils [Osobennosti stroenija kornevyh sistem Pinus sylvestris L. na osushenyh torfjanyh pochvah]. Botanicheskij zhurnal 1:79–87 (In Russian)

    Google Scholar 

  • Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD (2014) Root structural and functional dynamics in terrestrial biosphere models—evaluation and recommendations. New Phytol 205:59–78

    Article  PubMed  Google Scholar 

  • Wu H, Sharpe PJH, Walker J, Penridge LK (1985) Ecological field theory: a spatial analysis of resource interference among plants. Ecol Model 29:215–243

    Article  Google Scholar 

  • Yuan ZY, Chen HYH (2010) Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit Rev Plant Sci 29:204–221

    Article  CAS  Google Scholar 

  • Zheldak VI, Atrokhin VG (2003) Forestry [Lesovodstvo]. Moscow, VNIILM, p 336 (In Russian)

Download references

Acknowledgments

We would like to thank Dr. Risto Sievänen, Dr. Tuomo Kalliokoski, and Dr. Aleksi Lehtonen for the fruitful discussions and valuable comments on the structure of the model. We are also very grateful to the anonymous reviewer for the careful reading and constructive comments which helped us to improve the quality of the paper. The work was supported by the Russian Foundation for Basic Research, Grant Number 15-04-05400; the Academy of Finland, Project Numbers 140766 and 278151; and the Ministry of Education and Science of the Russian Federation (Project No. 14.616.21.0013 from 17.09.2014, unique identifier RFMEFI61614X0013). This paper is dedicated to Prof. Alexander Komarov who contributed a much to the development of the model concept and to the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Shanin.

Additional information

Communicated by Aaron R Weiskittel.

Alexander Komarov was Deceased.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanin, V., Mäkipää, R., Shashkov, M. et al. New procedure for the simulation of belowground competition can improve the performance of forest simulation models. Eur J Forest Res 134, 1055–1074 (2015). https://doi.org/10.1007/s10342-015-0909-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-015-0909-8

Keywords

Navigation