Skip to main content

Advertisement

Log in

Seed Bio-priming to Improve Germination, Seedling Growth and Essential Oil Yield of Dracocephalum Kotschyi Boiss, an Endangered Medicinal Plant in Iran

Bio-Priming von Saatgut zur Verbesserung von Keimung, Keimlingwachstum und Ertrag an ätherischen Ölen von Dracocephalum kotschyi Boiss, einer gefährdeten Arzneipflanze im Iran

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The study was conducted to evaluate the effects of 10 and 20 min seed soaking in Azotobacter chroococcum and Bacillus polymixa suspension culture on seed germination, seedling growth and essential oil yield of Dracocephalum kotschyi Boiss. Up to day 13, 20 min of B. polymixa suspension culture soaking seeds had shown germination more than 20%, whereas control seeds did not begin germination until day 13. The highest germination rate (1.67) was observed with 20 min of B. polymixa suspension culture soaking seeds. B. polymixa improved seedling length and vigour index more than those of A. chroococcum suspension culture soaking seeds. The highest fresh (81.06 g) and dry weight (11.76 g), relative leaf chlorophyll content (42.24) and Fv/Fm ratio (0.66) of emerging D. Kotschyi seedlings were recorded with seed bio-priming with B. polymixa for 20 min. The main components affected by B. polymixa and A. chroococcum were limonene, α‑pinene, γ‑terpinene, caryophyllene oxide, germacrene D and terpinen-4-ol. The highest percentage of essential oil constituents (97.6%) of D. Kotschyi seedlings were observed with 20 min of B. polymixa suspension culture soaking seeds. The results indicated that seed bio-priming with B. polymixa for 20 min was more effective than the other treatments concerning seed germination, seedling growth and essential oil yield of D. Kotschyi.

Zusammenfassung

Die Studie wurde durchgeführt, um die Auswirkungen eines 10- und 20-minütigen Einweichens von Dracocephalum-kotschyi-Boiss-Saatgut in einer Azotobacter-chroococcum- und Bacillus-polymixa-Suspensionskultur auf die Samenkeimung, das Keimlingswachstum und die Ausbeute an ätherischem Öl zu bewerten. Bis zum Tag 13 hatten die Samen, die 20 min in der B.-polymixa-Suspensionskultur eingeweicht worden waren, eine Keimung von mehr als 20 % gezeigt, während Kontrollsamen erst am Tag 13 mit der Keimung begannen. Die höchste Keimungsrate (1,67) wurde beim 20-minütigen Einweichen in der B.-polymixa-Suspensionskultur beobachtet. Das Einweichen in einer B.-polymixa-Suspensionskultur hatte einen positiveren Einfluss auf die Keimlingslänge und den Vitalitätsindex als das Einweichen in einer A.-chroococcum-Suspensionskultur. Die höchsten Werte für das Frisch- (81,06g) und Trockengewicht (11,76 g), den relativen Blattchlorophyllgehalt (42,24) und das Fv/Fm-Verhältnis (0,66) der D.-Kotschyi-Sämlinge wurden mit Saatgut-Bio-Priming mit B. polymixa für 20 min erreicht. Die von der Behandlung mit B. polymixa und A. chroococcum betroffenen Hauptkomponenten waren Limonen, α‑Pinen, γ‑Terpinen, Caryophyllenoxid, Germacren D und Terpinen-4-ol. Der höchste Anteil an ätherischen Ölbestandteilen (97,6 %) von D.-Kotschyi-Keimlingen wurde beim 20-minütigen Einweichen in der B.-polymixa-Suspensionskultur beobachtet. Die Ergebnisse zeigten, dass die Saatgutvorbereitung mit B. polymixa für 20 min bezüglich Saatgutkeimung, Keimlingswachstum und ätherischer Ölausbeute von D. Kotschyi wirksamer war als die anderen Behandlungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abuamsha R, Salman M, Ehlers R (2011) Effect of seed priming with Serratia plymuthica and Pseudomonas chlororaphis to control Leptosphaeria maculans in different oilseed rape cultivars. Eur J Plant Pathol 130:287–295. https://doi.org/10.1007/s10658-011-9753-y

    Article  Google Scholar 

  • Amirghofran Z, Azadbakht M, Karimi MH (2000) Evaluation of the immunomodulatory effects of five herbal plants. J Ethnopharmacol 72:167–172

    Article  CAS  Google Scholar 

  • Ananthi M, Selvaraju P, Sundaralingam K (2014) Effect of bio-priming using bio-control agents on seed germination and seedling vigour in chili (Capsicum annuum L.) ‘PKM 1’. J Hortic Sci Biotechnol 89(5):564–568. https://doi.org/10.1080/14620316.2014.11513121

    Article  Google Scholar 

  • Banchio E, Bogino PC, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem System Ecol 36:766–771. https://doi.org/10.1016/j.bse.2008.08.006

    Article  CAS  Google Scholar 

  • Banchio E, Xie X, Zhang H, Pare PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657. https://doi.org/10.1021/jf8020305

    Article  CAS  PubMed  Google Scholar 

  • Del Giudice L, Massardo DR, Pontieri P, Bertea CM, Tredici SM, Tala A, Mucciarelli M, Groudeva VI, De Stefano M, Vigliotta G, Maffei ME, Alifano P (2008) The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 10:2824–2841. https://doi.org/10.1111/j.1462-2920.2008.01703.x

    Article  CAS  PubMed  Google Scholar 

  • Delshadi S, Ebrahimi M, Shirmohammadi E (2017) Influence of plant-growth—Promoting bacteria on germination, growth and nutrient uptake of Onobrychis sativa L., under drought stress. J Plant Interact 12(1):200–208. https://doi.org/10.1080/17429145.2017.1316527

    Article  CAS  Google Scholar 

  • Dharni S, Srivastava AK, Samad A, Patra DD (2014) Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. Chemosphere 117:433–439. https://doi.org/10.1016/j.chemosphere.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  • Ellis RH, Roberts EH (1981) The quantification of ageing and survival in orthodox seeds. Seed Sci Technol 9:373–409

    Google Scholar 

  • Fattahi M, Nazeri V, Sefidkon F, Zamani Z, Palazon J (2011) The effect of pre-sowing treatments and light on seed germination of Dracocephalum kotschyi Boiss: An endangered medicinal plant in Iran. Hortic Environ Biotechnol 52(6):559–566. https://doi.org/10.1007/s13580-011-0057-0

    Article  Google Scholar 

  • Ghahreman A (1983) Flora of Iran. Research Institute of Forests and Rangelands Publications, Tehran, p 432

    Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Cheng Z, Duan J (2007) Promotion of plant growth by ACC-deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339. https://doi.org/10.1007/s10658-007-9162-4

    Article  CAS  Google Scholar 

  • Gohari AR, Saeidnia S, Matsuo K, Uchiyama N, Yagura T, Ito M, Kiuchi F, Honda G (2003) Flavonoid constituents of Dracocephalum kotschyi growing in Iran and their trypanocidal activity. J Nat Med 57:250–252

    CAS  Google Scholar 

  • Golshani S, Karamkhani F, Monsef-Esfehani HR, Abdollahi M (2004) Antinociceptive ffects of the essential oil of Dracocephalum kotschyi in the mouse writhing test. J Pharm Pharm Sci 7:76–79

    CAS  PubMed  Google Scholar 

  • Han QQ, Lu XP, Bai JP, Qiao Y, Pare PW, Wang SM, Zhang JL, Wu YN, Pang XP, Xu WB, Wang ZL (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:1–7. https://doi.org/10.3389/fpls.2014.00525

    Article  Google Scholar 

  • Harvey PR, Warren RA, Wakelin S (2009) Potential to improve root access to phosphorus: The role of non-symbiotic microbial inoculants in the rhizosphere. Crop Pasture Sci 60:144–151. https://doi.org/10.1071/CP08084

    Article  CAS  Google Scholar 

  • Jahaniani F, Ebrahimi SA, Rahbar-Roshandel N, Mahmoudian M (2005) Xanthomicrol is the main cytotoxic component of Dracocephalum kotschyii and a potential anti-cancer agent. Phytochemistry 66:1592–1581. https://doi.org/10.1016/j.phytochem.2005.04.035

    Article  CAS  Google Scholar 

  • Jalali A, Jamzad Z (1999) Red data book of Iran. Research Institute of Forests and Rangelands Iran, Tehran, p 748

    Google Scholar 

  • Javidnia K, Miri R, Fahham N (2005) Composition of the essential oil of Dracocephalum kotschyi Boiss., from Iran. J Essent Oil Res 17:481–482. https://doi.org/10.1080/10412905.2005.9698970

    Article  CAS  Google Scholar 

  • Kloepper JW, Zablowicz RM, Tipping B, Lifshitz R (1991) Plant growth mediated by bacterial rhizosphere colonizers. In: Keister DL, Gregan B (Eds.) The rhizosphere and plant growth. BARC Symp. 14: 315–326

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259

    Article  CAS  PubMed  Google Scholar 

  • Lenin G, Jayanthi M (2012) Efficiency of plant growth promoting rhizobacteria (PGPR) on enhancement of growth, yield and nutrient content of Catharanthus roseus. Int J Res Pure Appl Microbiol 2:37–42

    Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: A review. FEMS Microbiol Ecol 92(8):1–14. https://doi.org/10.1093/femsec/fiw112

    Article  CAS  Google Scholar 

  • Moghaddam G, Ebrahimi SA, Rahbar-Roshandel N, Foroumadi A (2012) Antiproliferative activity of flavonoids: Influence of the sequential methoxylation state of the flavonoid structure. Phytother Res 26:1023–1028. https://doi.org/10.1002/ptr.3678

    Article  CAS  PubMed  Google Scholar 

  • Moradi Dezfuli P, Sharif-Zadeh F, Janmohammadi M (2008) Influence of priming techniques on seed germination behavior of maize inbred lines (Zea mays L.). J Agric Biol Sci 3:22–25

    Google Scholar 

  • Mozaffarian V (1998) A dictionary of Iranian plants names. Farhang Moaser, Tehran, pp 192–193

    Google Scholar 

  • Nadjafi F, Bannayan M, Tabrizi L, Rastgoo M (2006) Seed germination and dormancy breaking techniques for Ferula gummosa and Teucrium polium. J Arid Environ 64:542–547. https://doi.org/10.1016/j.jaridenv.2005.06.009

    Article  Google Scholar 

  • Nadjafi F, Mahdavi Damghani M, Tabrizi L, Nejad Ebrahimi S (2014) Effect of biofertilizers on growth, yield and essential oil content of thyme (Thymus vulgaris L.) and sage (Salvia officinalis L.). J Essent Oil Bear Plants 17(2):237–250. https://doi.org/10.1080/0972060X.2013.813235

    Article  Google Scholar 

  • Nuncio-Orta G, Mendoza-Villarreal R, Robledo-Torres V, Vazquez- Badillo M, Almaraz Suarez JJ (2015) Influence of rhizobacteria on seed germination and vigor of seeds chili jalapeno (Capsicum annuum L. ‘var. Grande’). ITEA 111:18–33

    Google Scholar 

  • Pare PW, Zhang HM, Aziz M, Xie XT, Kim MS, Shen X, Zhang JL (2011) Beneficial rhizobacteria induce plant growth: Mapping signaling networks in Arabidopsis. In: Witzany BG (ed) Biocommunication in soil microorganisms. Soil biology, vol 23. Springer, Dordrecht, pp 403–412 https://doi.org/10.1007/978-3-642-14512-4_15 (Chapter. 15.)

    Chapter  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raghuchander T, Prakasam Samiyappan TR (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protect 20:1–11. https://doi.org/10.1016/S0261-2194(00)00056-9

    Article  CAS  Google Scholar 

  • Rechinger KH (1986) Labiatae. In: Rechinger KH, Hedge IC (eds) Flora Iranica, vol 150. Akademische Druck Verlagsantalt, Graz, pp 218–231

    Google Scholar 

  • Saeidnia S, Gohari AR, Uchiyama N, Ito M, Honda G, Kiuchi F (2004) Two new monoterpene glycosides and trypanocidal terpenoids from Dracocephalum kotschyi. Chem Pharm Bull 52:1249–1250

    Article  CAS  Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21. https://doi.org/10.1023/A:1013386921596

    Article  CAS  Google Scholar 

  • Shaukat K, Affrasayab S, Hasnain S (2006) Growth responses of Helianthus annus to plant growth promoting rhizobacteria used as a biofertilizer. J Agric Res 1:573–581. https://doi.org/10.3923/ijar.2006.573.581

    Article  CAS  Google Scholar 

  • Somova LA, Pechurkin NS, Sarangova AB, Pisman TI (2001) Effect of bacterial population density on germination wheat seeds and dynamics of simple artificial ecosystems. Adv Space Res 27(9):1611–1615. https://doi.org/10.1016/S0273-1177(01)00257-5

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R, Khalid AU, Singh S, Sharma AK (2010) Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum for the management of tomato wilt. Biol Control 53:24–31. https://doi.org/10.1016/j.biocontrol.2009.11.012

    Article  Google Scholar 

  • Takano T (1993) Germination characteristics of herbs in Labiatae. Acta Hortic 331:275–268

    Article  Google Scholar 

  • Thanos CA, Kadis CC, Skarou F (1995) Ecophysiology of germination in the aromatic plants thyme, savory and oregano (Labiatae). Seed Sci Res 5(30):161–170

    Article  Google Scholar 

  • Tiwari P, Singh JS (2017) A plant growth promoting rhizospheric Pseudomonas aeruginosa strain inhibits seed germination in Triticum aestivum (L) and Zea mays (L). Microbiol Res (Pavia) 8(2):1–7. https://doi.org/10.4081/mr.2017.7233

    Article  CAS  Google Scholar 

  • Veldhuizen V, Knight C (2006) Dragonhead mint (Dracocephalum parviflorum Nutt.) as potential agronomic crop for Alaska. AFES, Fairbanks, pp 1–12

    Google Scholar 

  • Wicaksono WA, Jones EE, Sansom CE, Perry NB, Monk J, Black A, Ridgway HJ (2017) Indigenous bacteria enhance growth and modify essential oil content in Leptospermum scoparium (manuka). NZ J Bot 55(3):306–317. https://doi.org/10.1080/0028825X.2017.1330272

    Article  Google Scholar 

  • Wiese AM, Binning LK (1987) Calculating the threshold temperature of development for weeds. Weed Sci 35:177–179. https://doi.org/10.1017/S0043174500079017

    Article  Google Scholar 

  • Wu YN, Feng YL, Pare PW, Chen YL, Xu R, Wu S, Wang SM, Zhao Q, Li HR, Wang YQ, Zhang JL (2016) Beneficial soil microbe promotes seed germination, plant growth and photosynthesis in herbal crop Codonopsis pilosula. Crop Pasture Sci 67(1):91–98. https://doi.org/10.1071/CP15110

    Article  CAS  Google Scholar 

  • Xie X, Zhang H, Pare PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  CAS  Google Scholar 

  • Zablotowicz RM, Tipping EM, Lifshitz R, Kloepper JW (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Beltsville symposia in agricultural research, vol 14. Springer, Dordrecht, pp 315–326 https://doi.org/10.1007/978-94-011-3336-4_70

    Chapter  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:96–168

    Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Pare PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577. https://doi.org/10.1111/j.1365-313X.2009.03803.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Pare PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273. https://doi.org/10.1111/j.1365-313X.2008.03593.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang JL, Aziz M, Qiao Y, Han QQ, Li J, Wang YQ, Shen X, Wang SM, Pare PW (2014) Soil microbe Bacillus subtilis (GB03) induces biomass accumulation and salt tolerance with lower sodium accumulation in wheat. Crop Pasture Sci 65:423–427. https://doi.org/10.1071/CP13456

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. However, we would like to thank the College of Agriculture, Isfahan University of Technology for the support to conduct this study and the colleagues who helped us during the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Shirani Bidabadi.

Ethics declarations

Conflict of interest

S.S. Bidabadi and M. Mehralian declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidabadi, S.S., Mehralian, M. Seed Bio-priming to Improve Germination, Seedling Growth and Essential Oil Yield of Dracocephalum Kotschyi Boiss, an Endangered Medicinal Plant in Iran. Gesunde Pflanzen 72, 17–27 (2020). https://doi.org/10.1007/s10343-019-00478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-019-00478-2

Keywords

Schlüsselwörter

Navigation