Skip to main content

Advertisement

Log in

Which bait should I use? Insights from a camera trap study in a highly diverse cerrado forest

  • Original Article
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

Identifying the most appropriate bait for a camera trap study is an important step in sampling design, as some baits may perform better than others in attracting different animal species. In this study, we compare the vertebrate communities detected using five different widely used baits (i.e., fruit, sardines, valerian extract, a mix of sweet fruits and peanut butter, and a combination of valerian extract and sardines). We assess their performance and characterize the species best detected by each bait in the diverse Cerrado biome. We identified a total of 46 species of vertebrates: 15 mammals, 4 reptiles, and 27 birds. The baits differed in their estimates of community composition, richness, and abundance. In general, valerian extract detected fewer individuals and species than any of the other baits. Fruits detected the largest number of bird species. Sardines detected the largest number of species overall and were the best bait for felines and reptiles. Baits of an animal origin performed similarly to those of a plant origin. Our study shows that baits should be selected based on the objective of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data used in this study is provided in the tables or in the supplementary material.

References

  • Ahumada JA, Hurtado J, Lizcano D (2013) Monitoring the status and trends of tropical forest terrestrial vertebrate communities from camera trap data: a tool for conservation. PLoS One 8(9):e73707

    Article  CAS  Google Scholar 

  • Andelt WF, Woolley TP (1996) Responses of urban mammals to odor attractants and a bait-dispensing device. Wildl Soc Bull 24:111–118

    Google Scholar 

  • Anderson MJ, Walsh DC (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574

    Article  Google Scholar 

  • Austin C, Tuft K, Ramp D, Cremona T, Webb JK (2017) Bait pref- erence for remote camera trap studies of the endangered northern quoll (Dasyurus hallucatus). Aust Mammal 39(1):72–77

    Article  Google Scholar 

  • Bessone M, Kühl HS, Hohmann G, Herbinger I, N'Goran KP, Asanzi P, da Costa PB, Dérozier V, Fotsing EDB, Beka BI, Iyomi MD, Iyatshi IB, Kafando P, Kambere MA, Moundzoho DB, Wanzalire MLK, Fruth B (2020) Drawn out of the shadows: surveying secretive forest species with camera trap distance sampling. J Appl Ecol 57:963–974

    Article  Google Scholar 

  • Campos CM, Velez S, Miguel MF, Papú S, Cona MI (2018) Studying the quantity component of seed dispersal effectiveness from exclosure treatments and camera trapping. Ecol Evol 8(11):5470–5479

    Article  Google Scholar 

  • Caravaggi A, Banks PB, Burton CA, Finlay C, Haswell PM, Hayward MW, Wood MD (2017) A review of camera trapping for conservation behaviour research. Remote Sens Ecol Conserv 3:109–122

    Article  Google Scholar 

  • Chupp AD (2005) Habitat selection in four sympatric small mammal species and the effects of potential predators on Peromyscus leucopus. Virginia Commonwealth University Richmond, Richmond

    Google Scholar 

  • Curveira-Santos G, Marques TA, Björklunda M, Santos-Reis M (2017) Mediterranean mesocarnivores in spatially structured managed landscapes: community organisation in time and space. Agric Ecosyst Environ 237:280–289

    Article  Google Scholar 

  • Cutler TL, Swann DE (1999) Using remote photography in wildlife ecology: a review. Wildl Soc Bull 27:571–581

    Google Scholar 

  • Diete RL, Meek PD, Dixon KM, Dickman CR, Leung L-K-P (2016) Best bait for your buck: bait preference for camera trapping north Australian mammals. Aust J Zool 63:376–382

    Article  Google Scholar 

  • Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti FMD, Dirzo R (2011) Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 14:773–781

    Article  Google Scholar 

  • du Preez BD, Loveridge AJ, MacDonald DW (2014) To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biol Conserv 176:153–161

    Article  Google Scholar 

  • Ferreira-Rodríguez N, Pombal MA (2019) Bait effectiveness in camera trap studies in the Iberian Peninsula. Mammal Res 64:155–164

    Article  Google Scholar 

  • Ferreras P, Díaz-Ruiz F, Alves PC, Monterroso P (2017) Optimizing camera-trapping protocols for characterizing mesocarnivore communities in South-Western Europe. J Zool 301:23–31

    Article  Google Scholar 

  • Ferreras P, Díaz-Ruiz F, Monterroso P (2018) Improving mesocarnivore detectability with lures in camera-trapping studies. Wildl Res 45:505–517

    Article  Google Scholar 

  • Gil-Sánchez JM, Moral M, Bueno J, Rodríguez-Siles J, Lillo S, Pérez J, Martín JM, Valenzuela G, Garrote G, Torralba B, Simón-Mata MA (2011) The use of camera trapping for estimating Iberian lynx (Lynx pardinus) home ranges. Eur J Wildl Res 57:1203–1211

    Article  Google Scholar 

  • González-Esteban J, Villate I, Irizar I (2004) Assessing camera traps for surveying the European mink, Mustela lutreola (Linnaeus, 1761), distribution. Eur J Wildl Res 50:33–36

    Article  Google Scholar 

  • Hamel S, Killengreen ST, Henden J-A, Eide NE, Roed-Eriksen L, Ims RA, Yoccoz NG (2013) Towards good practice guidance in using camera-traps in ecology: influence of sampling design on validity of ecological inferences. Methods Ecol Evol 4:105–113

    Article  Google Scholar 

  • Horn PE, Pereira MJR, Trigo TC, Eizirik E, Tirelli FP (2020) Margay (Leopardus wiedii) in the southernmost Atlantic Forest: density and activity patterns under different levels of anthropogenic disturbance. PLoS One 15(5):e0232013

    Article  CAS  Google Scholar 

  • Jiménez J, Nuñez-Arjona JC, Rueda C, González LM, García-Domínguez F, Muñoz-Igualada J, López-Bao JV (2017) Estimating carnivore community structures. Sci Rep 7:41036

    Article  Google Scholar 

  • Juarez KM, Marinho-Filho J (2002) Diet, habitat use, and home ranges of sympatric Canids in Central Brazil. J Mammal 83:925–933

    Article  Google Scholar 

  • Kierulf MCM, dos Santos GR, Canale G, Guidorizzi CE, Cassano C (2004) The use of camera-traps in a survey of the buff-headed capuchin monkey, Cebus xanthosternos. Neotrop Prim 12:56–59

    Google Scholar 

  • Klar N, Herrmann M, Kramer-Schadt S (2009) Effects and mitigation of road impacts on individual movement behavior of wildcats. J Wildl Manag 73:631–638

    Article  Google Scholar 

  • Marcon E, Hérault B (2015) Entropart: an R package to measure and partition diversity. J Stat Softw 67(8):1–26

    Article  Google Scholar 

  • McCallum J (2013) Changing use of camera traps in mammalian field research: habitats, taxa and study types. Mammal Rev 43:196–206

    Article  Google Scholar 

  • McLean WR, Goldingay RL, Westcott DA (2017) Visual lures increase camera-trap detection of the southern cassowary (Casuarius casuarius johnsonii). Wildl Res 44(3):230–237

    Article  Google Scholar 

  • Mills D, Fattebert J, Hunter L, Slotow R (2019) Maximising camera trap data: using attractants to improve detection of elusive species in multi-species surveys. PLoS One 14(5):e0216447

    Article  CAS  Google Scholar 

  • Monterroso P, Alves PC, Ferreras P (2011) Evaluation of attractants for non-invasive studies of Iberian carnivore communities. Wildl Res 38:446–454

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens HWM, Szoecs E, Wagner H (2019) Package ‘vegan.’ R package version 3.4.0

  • Rocha DG, Ramalho EE, Magnusson WE (2016) Baiting for carnivores might negatively affect capture rates of prey species in camera-trap studies. J Zool 300:205–212

    Article  Google Scholar 

  • Rovero F, Zimmermann F (2016) Camera trapping for wildlife research. Pelagic Publishing Ltd., Exeter

    Google Scholar 

  • Sarmento P, Cruz J, Eira C, Fonseca C (2009) Evaluation of camera trapping for estimating red fox abundance. J Wildl Manag 73:1207–1212

    Article  Google Scholar 

  • Sarmento PB, Cruz J, Eira C, Fonseca C (2011) Modeling the occupancy of sympatric carnivorans in a Mediterranean ecosystem. Eur J Wildl Res 57:119–131

    Article  Google Scholar 

  • Saunders G, Harris S (2000) Evaluation of attractants and bait preferences of captive red foxes (Vulpes vulpes). Wildl Res 27:237–243

    Article  Google Scholar 

  • Sebastián-González E, Barbosa JM, Pérez-García JM, Morales-Reyes Z, Botella F, Olea PP, Mateo-Tomás P, Moleón M, Hiraldo F, Arrondo E, Donázar JA, Cortés-Avizanda A, Selva N, Lambertucci SA, Bhattacharjee A, Brewer A, Anadón JD, Abernethy E, Rhodes OE Jr, Turner K, Beasley JC, DeVault TL, Ordiz A, Wikenros C, Zimmermann B, Wabakken P, Wilmers CC, Smith JA, Kendall CJ, Ogada D, Buechley ER, Frehner E, Allen ML, Wittmer HU, Butler JRA, Toit JT, Read J, Wilson D, Jerina K, Krofel M, Kostecke R, Inger R, Samson A, Naves-Alegre L, Sánchez-Zapata JA (2019) Scavenging in the Anthropocene: human impact drives vertebrate scavenger species richness at a global scale. Glob Chang Biol 25:3005–3017

    Article  Google Scholar 

  • Srbek-Araujo AC, da Cunha CJ, Roper JJ (2017) Post-dispersal seed predation by Atlantic forest squirrels monitoring lowland tapir latrines. Trop Ecol 58(3):673–678

    Google Scholar 

  • Steen R (2016) Diel activity, frequency and visit duration of pollinators in focal plants: in situ automatic camera monitoring and data processing. Methods Ecol Evol 8:203–213

    Article  Google Scholar 

  • Thorn M, Scott DM, Green M, Bateman PW, Cameron EZ (2009) Estimating brown hyaena occupancy using baited camera traps. S Afr J Wildl Res 39:1–10

    Article  Google Scholar 

  • Trolle M, Kéry M (2003) Estimation of ocelot density in the Pantanal using capture–recapture analysis of camera trapping data. J Mammal 84:607–614

    Article  Google Scholar 

Download references

Acknowledgments

We are especially grateful to G. de Oliveira, R.C. Rodrigues, A. Orihuela, and A. Camacho for their help with the species identification.

Funding

ESG, ZMR, and LNA were supported by Generalitat Valenciana (SEJI/2018/024, APOSTD/2019/016, ACIF/2019/056).

Author information

Authors and Affiliations

Authors

Contributions

ESG, ZMR, CJDA, JASZ, and LNA conceived the idea, all authors performed fieldwork, ESG, ZMR, LGM, and LNA identified species. ESG led the writing. All authors commented and accepted the final version.

Corresponding author

Correspondence to Esther Sebastián-González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastián-González, E., Morales-Reyes, Z., Naves-Alegre, L. et al. Which bait should I use? Insights from a camera trap study in a highly diverse cerrado forest. Eur J Wildl Res 66, 99 (2020). https://doi.org/10.1007/s10344-020-01439-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10344-020-01439-1

Keywords

Navigation