Skip to main content
Log in

Modelling rockfall impact with scarring in compactable soils

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

An accurate modelling of rockfall runout continues to be a demanding challenge within the geotechnical and hazards engineering community. Most existing rockfall dynamic programs apply effective restitution coefficients to model the energy dissipation during the rock-ground interaction. Recent experimental measurements, however, reveal the limitations of effective restitution coefficients, especially to account for scarring with frictional rebound in soft compactable soils. This study proposes a three-dimensional, non-smooth computational mechanic approach to model dissipative rock-ground interactions in soft compactable soils. The ground is mathematically divided into a soft, compactable scarring layer and a hard rebound layer. The model considers the plastic deformation of the ground with rotating rocks of general, non-spherical shape. The simulated rockfall energy dissipation is validated at both the single impact and multi-impact levels using induced 780-kg rockfall experiments performed at Chant Sura, Switzerland, in 2018. Overall, the numerical results are in good quantitative agreement with the experimental measurements. Ongoing improvements of the scar drag model are to integrate rotational drag into the rock energy dissipation term, and to calibrate the drag parameters in depths using repetitive rockfall experiments spanning a greater range of rock shapes and masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Albert I, Sample JG, Morss AJ, Rajagopalan S, Barabási AL, Schiffer P (2001) Granular drag on a discrete object: shape effects on jamming. Phys Rev E 64:061303

    Article  Google Scholar 

  • Asteriou P, Tsiambaos G (2018) Effect of impact velocity, block mass and hardness on the coefficients of restitution for rockfall analysis. Int J Rock Mech Min Sci 106:41–50

    Article  Google Scholar 

  • Asteriou P, Saroglou H, Tsiambaos G (2012) Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis. Int J Rock Mech Min Sci 54:103–113

    Article  Google Scholar 

  • Bartelt P, Gerber W, Christen M, Bühler Y (2016) Modeling rockfall trajectories with non-smooth contact/impact mechanics. In: Koboltschnig G (ed) Proc., 13th Congress INTERPRAEVENT, International Research Society INTERPRAEVENT, Luzern, Switzerland, pp 203–211

  • Blasio FVD, Dattola G, Crosta GB (2018) Extremely energetic rockfalls. J Geophys Res Earth Surf 123:2392–2421

    Article  Google Scholar 

  • Bourrier F, Berger F, Tardif P, Dorren L, Hungr O (2012) Rockfall rebound: comparison of detailed field experiments and alternative modelling approaches. Earth Surf Process Landf 37:656–665

    Article  Google Scholar 

  • Caviezel A, Gerber W (2018) Brief communication: measuring rock decelerations and rotation changes during short-duration ground impacts. Nat Hazards Earth Syst Sci 18:3145–3151

    Article  Google Scholar 

  • Caviezel A, Bühler Y, Lu G, Christen M, Bartelt P (2018a) Experimental validation of numerical rockfall trajectory models. In: Cardoso AS, Borges JL, Costa PA, Gomes AT, Marques JC, Vieira CS (eds) Proc., 9th European Conference on Numerical Methods in Geotechnical Engineering, Faculty of Engineering, University of Porto, Taylor & Francis, Porto, Portugal, pp 875–883

  • Caviezel A, Schaffner M, Cavigelli L, Niklaus P, Bühler Y, Bartelt P, Magno M, Benini L (2018b) Design and evaluation of a low-power sensor device for induced rockfall experiments. IEEE Trans Instrum Meas 67:767–779

    Article  Google Scholar 

  • Caviezel A, Demmel SE, Ringenbach A, Bühler Y, Lu G, Christen M, Dinneen CE, Eberhard LA, von Rickenbach D, Bartelt P (2019) Reconstruction of three-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes. Earth Surf Dyn 7:199–210

    Article  Google Scholar 

  • Christen M, Bühler Y, Bartelt P, Leine R, Glover J, Schweizer A, Graf C, McArdell BW, Gerber W, Deubelbeiss Y, Feistl T, Volkwein A (2012) Integral hazard management using a unified software environment: numerical simulation tool “ramms” for gravitational natural hazards. In: Koboltschnig G, Hübl J, Braun J (eds) Proc., 12th Congress INTERPRAEVENT, International Research Society INTERPRAEVENT, Grenoble, France, pp 77–86

  • Corona C, Lopez-Saez J, Favillier A, Mainieri R, Eckert N, Trappmann D, Stoffel M, Bourrier F, Berger F (2017) Modeling rockfall frequency and bounce height from three-dimensional simulation process models and growth disturbances in submontane broadleaved trees. Geomorphology 281:66–77

    Article  Google Scholar 

  • Dorren LKA (2016) Rockyfor3D (v5.2) revealed – transparent description of the complete 3D rockfall model. ecorisQ paper (www.ecorisq.org): 32p

  • Effeindzourou A, Thoeni K, Giacomini A, Wendeler C (2017) Efficient discrete modelling of composite structures for rockfall protection. Comput Geotech 87:99–114

    Article  Google Scholar 

  • Gang L, Hu XW, Du YJ, Fu JK, Mei XF (2018) A collision fragmentation model for predicting the distal reach of brittle fragmentable rock initiated from a cliff. Bull Eng Geol Environ 78:579–592

    Google Scholar 

  • Gao G, Meguid MA (2018) On the role of sphericity of falling rock clusters − insights from experimental and numerical investigations. Landslides 15:219–232

    Article  Google Scholar 

  • Gerber W (2019) Naturgefahr Steinschlag: Erfahrungen und Erkenntnisse. WSL-Bericht, Birmensdorf

    Google Scholar 

  • Gischig VS, Hungr O, Mitchell A, Bourrier F (2015) Pierre3d: a 3d stochastic rockfall simulator based on random ground roughness and hyperbolic restitution factors. Can Geotech J 52:1360–1373

    Article  Google Scholar 

  • Gratchev I, Saeidi S (2018) The effect of surface irregularities on a falling rock motion. Geomech Geoeng 14:52–58

    Article  Google Scholar 

  • Lambert S, Bourrier F, Toe D (2013) Improving three-dimensional rockfall trajectory simulation codes for assessing the efficiency of protective embankments. Int J Rock Mech Min Sci 60:26–36

    Article  Google Scholar 

  • Leine RI, Schweizer A, Christen M, Glover J, Bartelt P, Gerber W (2014) Simulation of rockfall trajectories with consideration of rock shape. Multibody Syst Dyn 32:241–271

    Article  Google Scholar 

  • Li LP, Lan HX (2015) Probabilistic modeling of rockfall trajectories: a review. Bull Eng Geol Environ 74:1163–1176

    Article  Google Scholar 

  • Li XF, Li HB, Zhang QB, Jiang JL, Zhao J (2018) Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law. Eng Fract Mech 199:739–759

    Article  Google Scholar 

  • Lu G, Third JR, Müller CR (2015) Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem Eng Sci 127:425–465

    Article  Google Scholar 

  • Lu G, Caviezel A, Christen M, Bühler Y, Bartelt P (2018) Modelling rockfall dynamics using (convex) non-smooth mechanics. In: Cardoso AS, Borges JL, Costa PA, Gomes AT, Marques JC, Vieira CS (eds) Proc., 9th European Conference on Numerical Methods in Geotechnical Engineering, Faculty of Engineering, University of Porto, Taylor & Francis, Porto, Portugal, pp 575–583

  • Macciotta R, Martin CD, Cruden DM (2015) Probabilistic estimation of rockfall height and kinetic energy based on a three-dimensional trajectory model and Monte Carlo simulation. Landslides 12:757–772

    Article  Google Scholar 

  • Studer C, Leine RI, Glocker C (2008) Step size adjustment and extrapolation for time-stepping schemes in non-smooth dynamics. Int J Numer Methods Eng 76:1747–1781

    Article  Google Scholar 

  • Thoeni K, Giacomini A, Lambert C, Sloan SW, Carter JP (2014) A 3d discrete element modelling approach for rockfall analysis with drapery systems. Int J Rock Mech Min Sci 68:107–119

    Article  Google Scholar 

  • Toe D, Mentani A, Govoni L, Bourrier F, Gottardi G, Lambert S (2018) Introducing meta-models for a more efficient hazard mitigation strategy with rockfall protection barriers. Rock Mech Rock Eng 51:1097–1109

    Article  Google Scholar 

  • Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, LKA D, Gerber W, Jaboyedoff M (2011) Rockfall characterisation and structural protection − a review. Nat Hazards Earth Syst Sci 11:2617–2651

    Article  Google Scholar 

  • Volkwein A, Brügger L, Gees F, Gerber W, Krummenacher B, Kummer P, Lardon J, Sutter T (2018) Repetitive rockfall trajectory testing. Geosciences 8:88

    Article  Google Scholar 

  • Wang YH, Jiang W, Cheng SG, Song PC, Mao C (2018) Effects of the impact angle on the coefficient of restitution in rockfall analysis based on a medium-scale laboratory test. Nat Hazards Earth Syst Sci 18:3045–3061

    Article  Google Scholar 

  • Zhang YL, Liu ZB, Shi C, Shao JF (2018) Three-dimensional reconstruction of block shape irregularity and its effects on block impacts using an energy-based approach. Rock Mech Rock Eng 51:1173–1191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, G., Caviezel, A., Christen, M. et al. Modelling rockfall impact with scarring in compactable soils. Landslides 16, 2353–2367 (2019). https://doi.org/10.1007/s10346-019-01238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-019-01238-z

Keywords

Navigation