Skip to main content
Log in

Flow-rate-insensitive deterministic particle sorting using a combination of travelling and standing surface acoustic waves

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Manipulation of cells by acoustic forces in a continuous flow offers a means to sort on the basis of physical properties in a contactless, label-free and biocompatible manner. Many acoustic sorting systems rely on either standing waves or travelling waves alone and require specific exposure times to the acoustic field, fine-tuned by manipulating the bulk flow rate. In this work, we demonstrate a flow-rate-insensitive device for continuous particle sorting by employing a pressure field that utilises both travelling and standing acoustic wave components, whose non-uniform spatial distribution arises from the attenuation of a leaky surface acoustic wave. We show that in parts of the pressure field in which the travelling wave component dominates, particles migrate across multiple wavelengths. In doing so, they drift into areas of standing wave dominance, whereby particles are confined within their respective nodal positions. It is demonstrated that this final confinement location is dependent on the particle size and independent of the force field exposure time and thus the flow rate, permitting the continuous separation of 5.1-, 6.1- and 7.0-µm particles. Omitting the need to precisely control the bulk flow rate potentially enables sorting in systems in which flow is not driven by external pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Behrens J, Langelier S, Rezk AR, Lindner G, Yeo LY, Friend JR (2015) Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves. Lab Chip 15(1):43–46. doi:10.1039/C4LC00704B

    Article  Google Scholar 

  • Bruus H (2008) Theoretical microfluidics. OUP, Oxford

    Google Scholar 

  • Campbell JJ, Jones WR (1968) A method for estimating optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves. Sonics and ultrasonics. IEEE Trans 15(4):209–217. doi:10.1109/T-SU.1968.29477

    Article  Google Scholar 

  • Carr C, Espy M, Nath P, Martin SL, Ward MD, Martin J (2009) Design, fabrication and demonstration of a magnetophoresis chamber with 25 output fractions. J Magn Magn Mater 321(10):1440–1445. doi:10.1016/j.jmmm.2009.02.064

    Article  Google Scholar 

  • Collins DJ, Alan T, Helmerson K, Neild A (2013) Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation. Lab Chip 13(16):3225–3231

    Article  Google Scholar 

  • Collins DJ, Alan T, Neild A (2014a) Particle separation using virtual deterministic lateral displacement (vDLD). Lab Chip 14(9):1595–1603. doi:10.1039/c3lc51367j

    Article  Google Scholar 

  • Collins DJ, Alan T, Neild A (2014b) The particle valve: on-demand particle trapping, filtering, and release from a microfabricated polydimethylsiloxane membrane using surface acoustic waves. Appl Phys Lett 105(3):033509. doi:10.1063/1.4891424

    Article  Google Scholar 

  • Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A (2015) Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 6:8686. doi:10.1038/ncomms9686

    Article  Google Scholar 

  • Collins DJ, Neild A, Ai Y (2016) Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting. Lab Chip 16(3):471–479. doi:10.1039/c5lc01335f

    Article  Google Scholar 

  • Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60(4):641–696

    Google Scholar 

  • Dentry MB, Yeo LY, Friend JR (2014) Frequency effects on the scale and behavior of acoustic streaming. Phys Rev E: Stat, Nonlinear, Soft Matter Phys 89(1):013203. doi:10.1103/PhysRevE.89.013203

    Article  Google Scholar 

  • Destgeer G, Lee KH, Jung JH, Alazzam A, Sung HJ (2013) Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). Lab Chip 13(21):4210–4216. doi:10.1039/c3lc50451d

    Article  Google Scholar 

  • Destgeer G, Ha BH, Jung JH, Sung HJ (2014) Submicron separation of microspheres via travelling surface acoustic waves. Lab Chip 14(24):4665–4672. doi:10.1039/c4lc00868e

    Article  Google Scholar 

  • Destgeer G, Ha BH, Park J, Jung JH, Alazzam A, Sung HJ (2015) Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves. Anal Chem 87(9):4627–4632. doi:10.1021/acs.analchem.5b00525

    Article  Google Scholar 

  • Devendran C, Gralinski I, Neild A (2014) Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel. Microfluid Nanofluid 17(5):879–890. doi:10.1007/s10404-014-1380-4

    Article  Google Scholar 

  • Devendran C, Albrecht T, Brenker J, Alan T, Neild A (2016a) The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Lab Chip 16:3756–3766. doi:10.1039/C6LC00798H

    Article  Google Scholar 

  • Devendran C, Gunasekara NR, Collins DJ, Neild A (2016b) Batch process particle separation using surface acoustic waves (SAW): integration of travelling and standing SAW. RSC Adv 6(7):5856–5864. doi:10.1039/c5ra26965b

    Article  Google Scholar 

  • Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046. doi:10.1039/b912547g

    Article  Google Scholar 

  • Ding X, Lin SC, Lapsley MI, Li S, Guo X, Chan CY, Chiang IK, Wang L, McCoy JP, Huang TJ (2012) Standing surface acoustic wave (SSAW) based multichannel cell sorting. Lab Chip 12(21):4228–4231. doi:10.1039/c2lc40751e

    Article  Google Scholar 

  • Dual J, Hahn P, Leibacher I, Moller D, Schwarz T, Wang J (2012) Acoustofluidics 19: ultrasonic microrobotics in cavities: devices and numerical simulation. Lab Chip 12(20):4010–4021. doi:10.1039/c2lc40733g

    Article  Google Scholar 

  • Franke T, Braunmuller S, Schmid L, Wixforth A, Weitz DA (2010) Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10(6):789–794. doi:10.1039/b915522h

    Article  Google Scholar 

  • Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83(2):647–704. doi:10.1103/RevModPhys.83.647

    Article  Google Scholar 

  • Gascoyne PRC, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23(13):1973–1983. doi:10.1002/1522-2683(200207)23:13<1973:aid-elps1973>3.0.co;2-1

    Article  Google Scholar 

  • Glynne-Jones P, Demore CE, Ye C, Qiu Y, Cochran S, Hill M (2012) Array-controlled ultrasonic manipulation of particles in planar acoustic resonator. IEEE Trans Ultrason Ferroelectr Freq Control 59(6):1258–1266. doi:10.1109/TUFFC.2012.2316

    Article  Google Scholar 

  • Hasegawa T, Yosioka K (1975) Acoustic radiation force on fused silica spheres, and intensity determination. J Acoust Soc Am 58(3):581–585. doi:10.1121/1.380708

    Article  Google Scholar 

  • Hitzbleck M, Lovchik RD, Delamarche E (2013) Flock-based microfluidics. Adv Mater 25(19):2672–2676. doi:10.1002/adma.201204854

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990

    Article  Google Scholar 

  • Johansson L, Nikolajeff F, Johansson S, Thorslund S (2009) On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem 81(13):5188–5196

    Article  Google Scholar 

  • Kim U, Qian J, Kenrick SA, Daugherty PS, Soh HT (2008) Multitarget dielectrophoresis activated cell sorter. Anal Chem 80(22):8656–8661. doi:10.1021/ac8015938

    Article  Google Scholar 

  • Lei H, Zhang Y, Li B (2012) Particle separation in fluidic flow by optical fiber. Opt Express 20(2):1292–1300. doi:10.1364/OE.20.001292

    Article  MathSciNet  Google Scholar 

  • Leibacher I, Schatzer S, Dual J (2014) Impedance matched channel walls in acoustofluidic systems. Lab Chip 14(3):463–470. doi:10.1039/c3lc51109j

    Article  Google Scholar 

  • Leibacher I, Reichert P, Dual J (2015) Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis. Lab Chip 15(13):2896–2905. doi:10.1039/c5lc00083a

    Article  Google Scholar 

  • Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217. doi:10.1039/b915999c

    Article  Google Scholar 

  • Li P, Mao Z, Peng Z, Zhou L, Chen Y, Huang P-H, Truica CI, Drabick JJ, El-Deiry WS, Dao M, Suresh S, Huang TJ (2015) Acoustic separation of circulating tumor cells. Proc Natl Acad Sci 112(16):4970–4975. doi:10.1073/pnas.1504484112

    Article  Google Scholar 

  • Loutherback K, Chou KS, Newman J, Puchalla J, Austin RH, Sturm JC (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluid 9(6):1143–1149. doi:10.1007/s10404-010-0635-y

    Article  Google Scholar 

  • MacDonald MP, Spalding GC, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426(6965):421–424

    Article  Google Scholar 

  • McGrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14(21):4139–4158. doi:10.1039/c4lc00939h

    Article  Google Scholar 

  • Miansari M, Qi A, Yeo LY, Friend JR (2015) Vibration-induced deagglomeration and shear-induced alignment of carbon nanotubes in air. Adv Funct Mater 25(7):1014–1023. doi:10.1002/adfm.201402976

    Article  Google Scholar 

  • Morijiri T, Sunahiro S, Senaha M, Yamada M, Seki M (2011) Sedimentation pinched-flow fractionation for size- and density-based particle sorting in microchannels. Microfluid Nanofluid 11(1):105–110. doi:10.1007/s10404-011-0785-6

    Article  Google Scholar 

  • Morton KJ, Loutherback K, Inglis DW, Tsui OK, Sturm JC, Chou SY, Austin RH (2008) Hydrodynamic metamaterials: microfabricated arrays to steer, refract, and focus streams of biomaterials. Proc Natl Acad Sci USA 105(21):7434–7438. doi:10.1073/pnas.0712398105

    Article  Google Scholar 

  • Neild A, Oberti S, Dual J (2007) Design, modeling and characterization of microfluidic devices for ultrasonic manipulation. Sens Actuato B Chem 121(2):452–461. doi:10.1016/j.snb.2006.04.065

    Article  Google Scholar 

  • Park S, Zhang Y, Wang TH, Yang S (2011) Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip 11(17):2893–2900. doi:10.1039/c1lc20307j

    Article  Google Scholar 

  • Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T (2005) Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 5(1):20–22. doi:10.1039/b405748c

    Article  Google Scholar 

  • Riera-Franco de Sarabia E, Gallego-Juárez JA, Rodríguez-Corral G, Elvira-Segura L, González-Gómez I (2000) Application of high-power ultrasound to enhance fluid/solid particle separation processes. Ultrasonics 38(1–8):642–646. doi:10.1016/s0041-624x(99)00129-8

    Article  Google Scholar 

  • Sajeesh P, Sen AK (2013) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17(1):1–52. doi:10.1007/s10404-013-1291-9

    Article  Google Scholar 

  • Schmid L, Weitz DA, Franke T (2014) Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14(19):3710–3718. doi:10.1039/c4lc00588k

    Article  Google Scholar 

  • Sesen M, Alan T, Neild A (2014) Microfluidic on-demand droplet merging using surface acoustic waves. Lab Chip 14(17):3325–3333. doi:10.1039/c4lc00456f

    Article  Google Scholar 

  • Shi J, Huang H, Stratton Z, Huang Y, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9(23):3354–3359. doi:10.1039/b915113c

    Article  Google Scholar 

  • Shields CW, Reyes CD, Lopez GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249. doi:10.1039/c4lc01246a

    Article  Google Scholar 

  • Shiokawa S, Matsui Y, Ueda T (1989) Liquid streaming and droplet formation caused by leaky Rayleigh waves. In: Ultrasonics symposium, 1989. Proceedings., IEEE 1989, 3–6 Oct 1989, vol 641, pp 643–646. doi:10.1109/ULTSYM.1989.67063

  • Sivanantha N, Ma C, Collins DJ, Sesen M, Brenker J, Coppel RL, Neild A, Alan T (2014) Characterization of adhesive properties of red blood cells using surface acoustic wave induced flows for rapid diagnostics. Appl Phys Lett 105(10):103704. doi:10.1063/1.4895472

    Article  Google Scholar 

  • Skowronek V, Rambach RW, Schmid L, Haase K, Franke T (2013) Particle deflection in a poly(dimethylsiloxane) microchannel using a propagating surface acoustic wave: size and frequency dependence. Anal Chem 85(20):9955–9959. doi:10.1021/ac402607p

    Article  Google Scholar 

  • Tartaj P, del Puerto Morales M, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182

    Article  Google Scholar 

  • Wang Y, Zhao Y, Cho SK (2007) Efficient in-droplet separation of magnetic particles for digital microfluidics. J Micromech Microeng 17(10):2148

    Article  Google Scholar 

  • Wei Hou H, Gan HY, Bhagat AA, Li LD, Lim CT, Han J (2012) A microfluidics approach towards high-throughput pathogen removal from blood using margination. Biomicrofluidics 6(2):24115–2411513. doi:10.1063/1.4710992

    Article  Google Scholar 

  • Wiklund M, Gunther C, Lemor R, Jager M, Fuhr G, Hertz HM (2006) Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Lab Chip 6(12):1537–1544. doi:10.1039/b612064b

    Article  Google Scholar 

  • Witte C, Reboud J, Wilson R, Cooper JM, Neale SL (2014) Microfluidic resonant cavities enable acoustophoresis on a disposable superstrate. Lab Chip 14(21):4277–4283. doi:10.1039/c4lc00749b

    Article  Google Scholar 

  • Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8(4):299–308. doi:10.1007/s10544-006-0033-0

    Article  Google Scholar 

  • Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5(11):1233–1239. doi:10.1039/b509386d

    Article  Google Scholar 

  • Yeo LY, Friend JR (2009) Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3(1):12002. doi:10.1063/1.3056040

    Article  Google Scholar 

  • Yeo LY, Friend JR (2014) Surface acoustic wave microfluidics. Annu Rev Fluid Mech 46(1):379–406. doi:10.1146/annurev-fluid-010313-141418

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support received from the Australian Research Council, Grant No. DP160101263. This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF). This research was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Neild.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, J.W., Collins, D.J., Devendran, C. et al. Flow-rate-insensitive deterministic particle sorting using a combination of travelling and standing surface acoustic waves. Microfluid Nanofluid 20, 151 (2016). https://doi.org/10.1007/s10404-016-1814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1814-2

Keywords

Navigation