Skip to main content
Log in

Viscous Taylor droplets in axisymmetric and planar tubes: from Bretherton’s theory to empirical models

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The aim of this study is to derive accurate models for quantities characterizing the dynamics of droplets of non-vanishing viscosity in capillaries. In particular, we propose models for the uniform-film thickness separating the droplet from the tube walls, for the droplet front and rear curvatures and pressure jumps, and for the droplet velocity in a range of capillary numbers, Ca, from \(10^{-4}\) to 1 and inner-to-outer viscosity ratios, \(\lambda\), from 0, i.e. a bubble, to high-viscosity droplets. Theoretical asymptotic results obtained in the limit of small capillary number are combined with accurate numerical simulations at larger Ca. With these models at hand, we can compute the pressure drop induced by the droplet. The film thickness at low capillary numbers (\(Ca<10^{-3}\)) agrees well with Bretherton’s scaling for bubbles as long as \(\lambda <1\). For larger viscosity ratios, the film thickness increases monotonically, before saturating for \(\lambda>10^3\) to a value \(2^{2/3}\) times larger than the film thickness of a bubble. At larger capillary numbers, the film thickness follows the rational function proposed by Aussillous and Quéré (Phys Fluids 12(10):2367–2371, 2000) for bubbles, with a fitting coefficient which is viscosity-ratio dependent. This coefficient modifies the value to which the film thickness saturates at large capillary numbers. The velocity of the droplet is found to be strongly dependent on the capillary number and viscosity ratio. We also show that the normal viscous stresses at the front and rear caps of the droplets cannot be neglected when calculating the pressure drop for \(Ca>10^{-3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

A :

Coefficient for flow profile

B :

Coefficient for flow profile

C :

Coefficient for interface profile of static meniscus

\(\mathscr {C}\) :

Mean curvature of droplet interface

D :

Coefficient for interface profile of static meniscus

\(c_1\), \(c_2\) :

Coefficient for fitting law of P, \(\bar{P}\)

Ca :

Capillary number based on droplet velocity

\(Ca_{\infty }\) :

Capillary number based on mean outer velocity

F :

Coefficient for minimum film thickness

\(\bar{F}\) :

Averaged F coefficient

G :

Coefficient for minimum film thickness

H :

Thickness of film between wall and droplet

\(H_{\textsf {min}}\) :

Minimum film thickness

\(H_{\infty }\) :

Uniform film thickness

\(H_{\infty }^{\star }\) :

Critical uniform film thickness for recirculations

K :

Coefficient for linearized lubrication equation

\({\mathbf {I}}\) :

Identity tensor

\(L_d\) :

Droplet length

M :

Coefficient for pressure model

m :

Rescaled viscosity ratio

N :

Coefficient for pressure model

\(\mathbf {n}\) :

Unit vector normal to the droplet interface

O :

Coefficient for pressure model

P :

Coefficient for interface profile of static meniscus

\(\bar{P}\) :

Averaged P coefficient

p :

Pressure

\(p_{\textsf {linear}}\) :

Pressure if constant gradient

Q :

Coefficient for uniform film thickness model

q :

Volume flux

R :

Capillary tube radius or half width

Re :

Reynolds number

r :

Radial direction (axisymmetric geometry)

\(\tilde{r}\) :

Half width of droplet

S :

Coefficient for classical pressure model

t :

Time

T :

Coefficient for plane curvature model

\(U_{d}\) :

Droplet velocity

\(U_{\infty }\) :

Average outer flow velocity

\(u_{\infty }\) :

Outer far-field velocity profile

\(\mathbf {u}\) :

Velocity field

u :

Streamwise velocity

v :

Spanwise velocity

x :

Streamwise direction (planar geometry)

y :

Spanwise direction (planar geometry)

z :

Axial direction (axisymmetric geometry)

Z :

Coefficient for plane curvature model

\(\alpha\) :

Parameter for solution of linear lubrication equation

\(\beta\) :

Coefficient for plane curvature model

\(\Delta\) :

Difference between inner and outer quantities

\(\Delta p^{\text {NP}}\) :

Pressure correction due to non-parallel flow effects

\(\Delta p_{\textsf {tot}}\) :

Total pressure drop

\(\gamma\) :

Surface tension

\(\eta\) :

Rescaled film thickness

\(\kappa\) :

Plane curvature of droplet interface in the (zr) or (xy) plane

\(\kappa _{f,r}\) :

Plane curvature at the front/rear droplet extremities

\(\lambda\) :

Inner-to-outer dynamic viscosity ratio

\(\mu\) :

Dynamic viscosity

\(\xi\) :

Rescaled axial direction

\(\varvec{\sigma} \) :

Total stress tensor

\(\varvec{\tau } \) :

Viscous stress tensor

\(\phi\) :

Phase of solution of linear lubrication equation

\(\chi\) :

Geometric coefficient

\(\Omega\) :

Droplet volume or area

f :

Front cap

i :

Inner

o :

Outer

r :

Rear cap

zz :

Normal tensor component in the axial direction

2D:

Two-dimensional

3D:

Three-dimensional

ALE:

Arbitrary Lagrangian–Eulerian

BIM:

Boundary integral method

FEM:

Finite element method

References

  • Abadie T, Aubin J, Legendre D, Xuereb C (2012) Hydrodynamics of gas-liquid Taylor flow in rectangular microchannels. Microfluid Nanofluid 12(1–4):355–369

    Article  Google Scholar 

  • Anjos G, Mangiavacchi N, Borhani N, Thome JR (2014) 3D ALE finite-element method for two-phase flows with phase change. Heat Transfer Eng 35(5):537–547

    Article  MATH  Google Scholar 

  • Anjos GR, Borhani N, Mangiavacchi N, Thome JR (2014) A 3D moving mesh finite element method for two-phase flows. J Comput Phys 270:366–377

    Article  MathSciNet  MATH  Google Scholar 

  • Anna SL (2016) Droplets and bubbles in microfluidic devices. Annu Rev Fluid Mech 48:285–309

    Article  MathSciNet  MATH  Google Scholar 

  • Aussillous P, Quéré D (2000) Quick deposition of a fluid on the wall of a tube. Phys Fluids 12(10):2367–2371

    Article  MATH  Google Scholar 

  • Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045

    Article  Google Scholar 

  • Boden S, dos Santos Rolo T, Baumbach T, Hampel U (2014) Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow. Exp Fluids 55(7):1768

    Article  Google Scholar 

  • Boos W, Thess A (1997) Thermocapillary flow in a Hele-Shaw cell. J Fluid Mech 352:305–330

    Article  MathSciNet  MATH  Google Scholar 

  • Bretherton FP (1961) The motion of long bubbles in tubes. J Fluid Mech 10(02):166–188

    Article  MathSciNet  MATH  Google Scholar 

  • Cantat I (2013) Liquid meniscus friction on a wet plate: Bubbles, lamellae, and foams. Phys Fluids 25(3):031303

    Article  MathSciNet  Google Scholar 

  • Chen JD (1986) Measuring the film thickness surrounding a bubble inside a capillary. J Colloid Interface Sci 109(2):341–349

    Article  Google Scholar 

  • Cherukumudi A, Klaseboer E, Khan SA, Manica R (2015) Prediction of the shape and pressure drop of Taylor bubbles in circular tubes. Microfluid Nanofluid 19(5):1221–1233

    Article  Google Scholar 

  • de Ryck A (2002) The effect of weak inertia on the emptying of a tube. Phys Fluids 14(7):2102–2108

    Article  MathSciNet  MATH  Google Scholar 

  • Derjaguin B (1943) On the thickness of the liquid film adhering to the walls of a vessel after emptying. Acta Physicochimica URSS 20(43):349–352

    Google Scholar 

  • Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Progr Phys 71(3):036601

    Article  Google Scholar 

  • Fairbrother F, Stubbs AE (1935) Studies in electro-endosmosis. Part VI. The bubble-tube method of measurement. J Chem Soc 1:527–529

    Google Scholar 

  • Fuerstman MJ, Lai A, Thurlow ME, Shevkoplyas SS, Stone HA, Whitesides GM (2007) The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11):1479–1489

    Article  Google Scholar 

  • Ganesan S, Hahn A, Simon K, Tobiska L (2017) ALE-FEM for two-phase and free surface flows with surfactants. In: Bothe D, Reusken A (eds) Transport Processes at Fluidic Interfaces. Springer International Publishing, Cham, pp 5–31

    Chapter  Google Scholar 

  • Ganesan S, Tobiska L (2012) Arbitrary Lagrangian-Eulerian finite-element method for computation of two-phase flows with soluble surfactants. J Comput Phys 231(9):3685–3702

    Article  MathSciNet  MATH  Google Scholar 

  • Giavedoni MD, Saita FA (1997) The axisymmetric and plane cases of a gas phase steadily displacing a Newtonian liquid - A simultaneous solution of the governing equations. Phys Fluids 9(8):2420–2428

    Article  Google Scholar 

  • Giavedoni MD, Saita FA (1999) The rear meniscus of a long bubble steadily displacing a Newtonian liquid in a capillary tube. Phys Fluids 11(4):786–794

    Article  MathSciNet  MATH  Google Scholar 

  • Günther A, Jensen KF (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6(12):1487–1503

    Article  Google Scholar 

  • Gupta R, Leung SSY, Manica R, Fletcher DF, Haynes BS (2013) Three dimensional effects in taylor flow in circular microchannels. La Houille Blanche 2:60–67

    Article  Google Scholar 

  • Hadikhani P, Hashemi SMH, Balestra G, Zhu L, Modestino MA, Gallaire F, Psaltis D (2018) Inertial manipulation of bubbles in rectangular microfluidic channels. Lab Chip 18(7):1035–1046

    Article  Google Scholar 

  • Han Y, Shikazono N (2009) Measurement of liquid film thickness in micro square channel. Int J Multiph Flow 35(10):896–903

    Article  Google Scholar 

  • Hazel AL, Heil M, Waters SL, Oliver JM (2012) On the liquid lining in fluid-conveying curved tubes. J Fluid Mech 705:213–233

    Article  MathSciNet  MATH  Google Scholar 

  • Heil M (2001) Finite Reynolds number effects in the Bretherton problem. Phys Fluids 13(9):2517–2521

    Article  MathSciNet  MATH  Google Scholar 

  • Herrada MA, Ganan-Calvo AM, Guillot P (2008) Spatiotemporal instability of a confined capillary jet. Phys Rev E 78(4):046312

    Article  Google Scholar 

  • Hodges SR, Jensen OE, Rallison JM (2004) The motion of a viscous drop through a cylindrical tube. J Fluid Mech 501:279–301

    Article  MathSciNet  MATH  Google Scholar 

  • Huerre A, Theodoly O, Leshansky AM, Valignat MP, Cantat I, Jullien MC (2015) Droplets in microchannels: dynamical properties of the lubrication film. Phys Rev Lett 115(6):064501

    Article  Google Scholar 

  • Jakiela S, Makulska S, Korczyk PM, Garstecki P (2011) Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities. Lab Chip 11(21):3603–3608

    Article  Google Scholar 

  • Khodaparast S, Kim MK, Silpe JE, Stone HA (2017) Bubble-driven detachment of bacteria from confined microgeometries. Environ Sci Technol 51(3):1340–1347

    Article  Google Scholar 

  • Khodaparast S, Magnini M, Borhani N, Thome JR (2015) Dynamics of isolated confined air bubbles in liquid flows through circular microchannels: an experimental and numerical study. Microfluid Nanofluid 19(1):209–234

    Article  Google Scholar 

  • Klaseboer E, Gupta R, Manica R (2014) An extended Bretherton model for long Taylor bubbles at moderate capillary numbers. Phys Fluids 26(3):032107

    Article  Google Scholar 

  • Köhler J, Cahill B (2014) Micro-segmented flow: applications in chemistry and biology. biological and medical physics, biomedical engineering. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Kreutzer MT, Kapteijn F, Moulijn JA, Kleijn CR, Heiszwolf JJ (2005) Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AIChE J 51(9):2428–2440

    Article  Google Scholar 

  • Lac E, Sherwood JD (2009) Motion of a drop along the centreline of a capillary in a pressure-driven flow. J Fluid Mech 640:27–54

    Article  MathSciNet  MATH  Google Scholar 

  • Ładosz A, Rigger E, von Rohr PR (2016) Pressure drop of three-phase liquid-liquid-gas slug flow in round microchannels. Microfluid Nanofluid 20(3):49

    Article  Google Scholar 

  • Landau L, Levich B (1942) Dragging of a Liquid by a moving plate. Acta Physicochimica URSS 17(42):42–54

    Google Scholar 

  • Langewisch DR, Buongiorno J (2015) Prediction of film thickness, bubble velocity, and pressure drop for capillary slug flow using a CFD-generated database. Int J Heat Fluid Flow 54:250–257

    Article  Google Scholar 

  • Leung SSY, Gupta R, Fletcher DF, Haynes BS (2011) Effect of flow characteristics on Taylor flow heat transfer. Indus Eng Chem Res 51(4):2010–2020

    Article  Google Scholar 

  • Li J (2016) Macroscopic model for head-on binary droplet collisions in a gaseous medium. Phys Rev Lett 117(21):214502

    Article  Google Scholar 

  • Magnini M, Ferrari A, Thome JR, Stone HA (2017) Undulations on the surface of elongated bubbles in confined gas–liquid flows. Phys Rev Fluids 2(8):084001

    Article  Google Scholar 

  • Martinez MJ, Udell KS (1990) Axisymmetric creeping motion of drops through circular tubes. J Fluid Mech 210:565–591

    Article  MATH  Google Scholar 

  • Mikaelian D, Haut B, Scheid B (2015) Bubbly flow and gas-liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: dissolution model. Microfluid Nanofluid 19(4):899–911

    Article  Google Scholar 

  • Nagel M, Gallaire F (2015) Boundary elements method for microfluidic two-phase flows in shallow channels. Comput Fluids 107:272–284

    Article  MathSciNet  MATH  Google Scholar 

  • Park CW, Homsy GM (1984) Two-phase displacement in Hele-Shaw cells: theory. J Fluid Mech 139:291–308

    Article  MATH  Google Scholar 

  • Ratulowski J, Chang HC (1989) Transport of gas bubbles in capillaries. Phys Fluids A Fluid Dyn 1(10):1642–1655

    Article  MathSciNet  Google Scholar 

  • Reinelt DA, Saffman PG (1985) The penetration of a finger into a viscous fluid in a channel and tube. SIAM J Sci Stat Comput 6(3):542–561

    Article  MathSciNet  MATH  Google Scholar 

  • Rivero-Rodriguez J, Scheid B (2018) Bubble dynamics in microchannels: inertial and capillary migration forces. J Fluid Mech 842:215–247

    Article  MathSciNet  Google Scholar 

  • Saffman PG, Taylor G (1958) The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc R Soc Lond A 245(1242):312–329

    Article  MathSciNet  MATH  Google Scholar 

  • Schwartz LW, Princen HM, Kiss AD (1986) On the motion of bubbles in capillary tubes. J Fluid Mech 172:259–275

    Article  Google Scholar 

  • Shen EI, Udell KS (1985) A finite element study of low Reynolds number two-phase flow in cylindrical tubes. J Appl Mech 52(2):253–256

    Article  Google Scholar 

  • Stone HA (2010) Interfaces: in fluid mechanics and across disciplines. J Fluid Mech 645:1–25

    Article  MATH  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  MATH  Google Scholar 

  • Taylor GI (1961) Deposition of a viscous fluid on the wall of a tube. J Fluid Mech 10(02):161–165

    Article  MATH  Google Scholar 

  • Tsai TM, Miksis MJ (1994) Dynamics of a drop in a constricted capillary tube. J Fluid Mech 274:197–217

    Article  MathSciNet  MATH  Google Scholar 

  • Warnier MJF, De Croon MM, Rebrov EV, Schouten JC (2010) Pressure drop of gas-liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers. Microfluid Nanofluid 8(1):33

    Article  Google Scholar 

  • Wong H, Radke CJ, Morris S (1995) The motion of long bubbles in polygonal capillaries. Part 1. Thin films. J Fluid Mech 292:71–94

    Article  MATH  Google Scholar 

  • Wong H, Radke CJ, Morris S (1995) The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow. J Fluid Mech 292:95–110

    Article  MATH  Google Scholar 

  • Zhu L, Gallaire F (2016) A pancake droplet translating in a Hele-Shaw cell: lubrication film and flow field. J Fluid Mech 798:955–969

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was funded by ERC Grant no. ‘SIMCOMICS 280117’. L.Z. gratefully acknowledges the VR International Postdoc Grant from Swedish Research Council ‘2015-06334’ for financial support. The authors would like to acknowledge the valuable comments from the anonymous referees that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gioele Balestra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (M 4 kb)

Appendices

Appendix 1: Derivation of the flow profiles in the thin-film region for the planar configuration

Consider an axial location in the thin-film region. The velocity profiles inside, \(u_i\), and outside, \(u_o\), of the droplet can be described by:

$$\begin{aligned} u_i(r)&= {} \frac{1}{2 \mu _i} \frac{\mathrm{{d}} p_i}{\mathrm{{d}}z} r^2 + A_i r + B_i,\end{aligned}$$
(52)
$$\begin{aligned} u_o(r)&= {} \frac{1}{2 \mu _o} \frac{\mathrm{{d}} p_o}{\mathrm{{d}}z} r^2 + A_o r + B_o, \end{aligned}$$
(53)

where \(p_i\) and \(p_o\) are the inner, respectively outer, pressures, and \(A_i\), \(B_i\), \(A_o\) and \(B_o\) are real constants to be determined. Given the symmetry at \(r=0\) of the inner velocity, \(A_i=0\). The other constants are found by imposing the no-slip boundary condition at the channel walls \(u(R) = -U_d\) in the droplet reference frame, the continuity of velocities at the interface located at \(r=R-H\), \(u_i(R-H) = u_o(R-H)\), and the continuity of tangential stresses at the interface

$$\begin{aligned} \mu _i \frac{\mathrm{{d}} u_i}{\mathrm{{d}}z}\bigg \vert _{r=R-H} = \mu _o \frac{\mathrm{{d}} u_o}{\mathrm{{d}}z}\bigg \vert _{r=R-H}. \end{aligned}$$
(54)

Eventually one obtains:

$$\begin{aligned} A_o&= {} \frac{1}{\mu _o} \left( \frac{\mathrm{{d}} p_i}{\mathrm{{d}}z}-\frac{\mathrm{{d}} p_o}{\mathrm{{d}}z}\right) (R-H),\end{aligned}$$
(55)
$$\begin{aligned} B_i= {} \frac{1}{2 \mu _i \mu _o} \left[ -(R - H)^2\frac{\mathrm{{d}} p_i}{\mathrm{{d}}z} \mu _o + H \left( 2 H \frac{\mathrm{{d}} p_i}{\mathrm{{d}}z} - H \frac{\mathrm{{d}} p_o}{\mathrm{{d}}z} - 2 R \frac{\mathrm{{d}} p_i}{\mathrm{{d}}z} \right) \mu _i \right] -U_d,\end{aligned}$$
(56)
$$\begin{aligned} B_o&= {} \frac{1}{2 \mu _o}\left[ \left( \frac{\mathrm{{d}} p_o}{\mathrm{{d}}z} - 2\frac{\mathrm{{d}} p_i}{\mathrm{{d}}z} \right) R^2- 2 H R \left( \frac{\mathrm{{d}} p_o}{\mathrm{{d}}z} - \frac{\mathrm{{d}} p_i}{\mathrm{{d}}z} \right) \right] -U_d. \end{aligned}$$
(57)

Appendix 2: Derivation of the interface profile equation for the planar configuration

The flow rates at any axial location where the external film thickness is H are:

$$\begin{aligned} q_i&= {} 2 \int _0^{R-H} u_i(r) \mathrm{{d}}r \nonumber \\&= {} \frac{1}{3\mu _i\mu _o}\left\{ -(R-H)\left[ 3 H \left( H \left( \frac{\mathrm{{d}} p_o}{\mathrm{{d}}z} -2 \frac{\mathrm{{d}} p_i}{\mathrm{{d}}z} \right) +2\frac{\mathrm{{d}} p_i}{\mathrm{{d}}z} R\right) \mu _i \right. \right. \nonumber \\&+ \left. \left. 2 \frac{\mathrm{{d}} p_i}{\mathrm{{d}}z} (R-H)^2\mu _o\right] \right\} -2U_d (R-H), \end{aligned}$$
(58)
$$\begin{aligned} q_o&= {} 2 \int _{R-H}^{R} u_o(r) \mathrm{{d}}r \nonumber \\&= {} \frac{H^2}{3\mu _o}\left[ H\left( 3\frac{\mathrm{{d}} p_i}{\mathrm{{d}}z} -2\frac{\mathrm{{d}} p_o}{\mathrm{{d}}z}\right) -3\frac{\mathrm{{d}} p_i}{\mathrm{{d}}z} R\right] -2 U_d H. \end{aligned}$$
(59)

In the droplet reference frame, the flow rate of the inner phase has to vanish, \(q_i =0\). Furthermore, in the region where the film is uniform (see Fig. 11), \(H=H_{\infty }\), the inner and outer pressure gradients have to be equal. Using these two conditions, one can solve for the pressure gradient in the uniform film region

$$\begin{aligned} \frac{\mathrm{{d}} p}{\mathrm{{d}}z} \bigg \vert _{r=R-H_{\infty }} \approx -\frac{6 \mu _i U_d}{2 R^2-(4 -6\lambda ) H_{\infty } R + (2-3 \lambda ) H_{\infty }^2} \end{aligned}$$
(60)

and for the outer flow rate, where the limit \(H_{\infty }/R \ll 1\) is considered:

$$\begin{aligned} q_o\approx & {} -2 H_{\infty } \left[ \frac{2 R^2 - (4-3 \lambda ) H_{\infty } R +2(1- \lambda ) H_{\infty }^2 }{ 2R^2 - (4 -6\lambda ) H_{\infty } R+(2-3 \lambda ) H_{\infty }^2}\right] U_d \nonumber \\\approx & {} -H_{\infty } \left[ \frac{2 R - (4-3 \lambda ) H_{\infty } }{ R - (2 -3\lambda ) H_{\infty } }\right] U_d. \end{aligned}$$
(61)

The pressure gradients in the dynamic meniscus regions are no longer equal and their difference is proportional to the deformation of the interface \(r=R-H\). Under the assumption of a quasi-parallel flow, and neglecting the viscous contribution in view of the lubrication assumption, the Laplace’s law imposes:

$$\begin{aligned} \frac{\mathrm{{d}} p_i}{\mathrm{{d}}z} - \frac{\mathrm{{d}} p_o}{\mathrm{{d}}z} = \gamma \frac{\mathrm{{d}}^3 H}{\mathrm{{d}} z^3}. \end{aligned}$$
(62)

Knowing \(q_i\) and \(q_o\), Eqs. (58), (59) can be solved for the unknown pressure gradients \(\mathrm{{d}}p_i/\mathrm{{d}}z\), \(\mathrm{{d}}p_o/\mathrm{{d}}z\) as a function of H:

$$\begin{aligned} \frac{\mathrm{{d}} p_i}{\mathrm{{d}}z}\approx & {} \frac{ 3\lambda \left\{ 2H\left[ H_{\infty }(3\lambda -2)+R\right] -3H_{\infty }\left[ H_{\infty }(3\lambda -4)+2R\right] \right\} \mu _oU_d}{H(R-H)\left[ H(3\lambda -4)+4R\right] \left[ H_{\infty }(3\lambda -2)+R\right] },\end{aligned}$$
(63)
$$\begin{aligned} \frac{\mathrm{{d}} p_o}{\mathrm{{d}}z}\approx & {} -6 \left\{ \frac{R(H-H_{\infty })\left[ 3\lambda (H+H_{\infty })-2(H+2H_{\infty })\right] }{H^3\left[ H(3\lambda -4)+4R\right] \left[ H_{\infty }(3\lambda -2)+R\right] }\right. \nonumber \\&\left. +\frac{H H_{\infty }[H(2-3\lambda )^2+H_{\infty }(3(5-3\lambda )\lambda -4)]+2R^2(H-H_{\infty })}{H^3\left[ H(3\lambda -4)+4R\right] \left[ H_{\infty }(3\lambda -2)+R\right] }\right\} \mu _o U_d \end{aligned}$$
(64)

and substituted into Eq. (62). Following Bretherton (1961), the resulting equation can be put in an universal form by the substitutions \(H = H_{\infty } \eta\) and \(z = H_{\infty } (3 Ca)^{-1/3} \xi\). In the limit of \(H_{\infty }/R\rightarrow 0\), the governing equation for the interface profile reads:

$$\begin{aligned} \frac{{\text {d}}^3 \eta }{{\text {d}}\xi ^3} =2\frac{\eta -1}{\eta ^3}\left[ \frac{2+3 m (1+ \eta + 3 m \eta )}{(1+3m)(4+3m\eta )}\right]. \end{aligned}$$
(65)

where

$$\begin{aligned} m = \lambda \frac{H_{\infty }}{R} \end{aligned}$$
(66)

is the rescaled viscosity ratio.

Appendix 3: Derivation of the droplet velocity model for the planar configuration

The velocity profiles in the uniform film region have been derived in “Appendix 1”. In particular, the inner and outer volumetric fluxes are given by Eqs. (58) and (59), respectively. At the location where \(H=H_{\infty }\) the interface is flat and the pressure gradients are equal, \(\mathrm{{d}}p_i/\mathrm{{d}}z=\mathrm{{d}}p_o/\mathrm{{d}}z=\mathrm{{d}}p/\mathrm{{d}}z\). Furthermore, mass conservation imposes that \(q_o= 2R (U_{\infty }-U_d)\) and since we are in the reference frame of the droplet, \(q_i=0\). The system of two equations can be solved for the pressure gradient

$$\begin{aligned} \frac{\mathrm{{d}} p}{\mathrm{{d}}z} \bigg \vert _{r=R-H_{\infty }} = \frac{-3 R U_{\infty } \mu _i}{(R-H_{\infty })^3+H_{\infty }(3R^2-3H_{\infty }R +H_{\infty }^2)\lambda } \end{aligned}$$
(67)

and the droplet velocity

$$\begin{aligned} U_d= \frac{R[2(R-H_{\infty })^2+3 H_{\infty }(2R-H_{\infty })\lambda ]}{2(R-H_{\infty })^3+2H_{\infty }(3R^2-3H_{\infty }R+H_{\infty }^2)\lambda }U_{\infty }. \end{aligned}$$
(68)

The relative velocity of the planar droplet reads

$$\begin{aligned} \frac{U_d-U_{\infty }}{U_d} = \frac{\frac{H_{\infty }}{R} \left\{ 2-\frac{H_{\infty }}{R} \left[ 4+2 \frac{H_{\infty }}{R}(\lambda -1) -3 \lambda \right] \right\} }{2+\left( 2-\frac{H_{\infty }}{R}\right) \frac{H_{\infty }}{R}(3\lambda -2)}. \end{aligned}$$
(69)

Appendix 4: Derivation of the critical uniform film thickness for the appearance of the recirculation regions

The velocity profile in the channel away from the droplet is given by Eq. (11) for the axisymmetric configuration and by

$$\begin{aligned} u_{\infty }(y) = \frac{3}{2} U_{\infty }\left[ 1-\left( \frac{y}{R}\right) ^2\right] -U_d \end{aligned}$$
(70)

for the planar one. The droplet velocity for the former case is given by Eq. (32), whereas for the latter it is given by Eq. (68). With the use of Eqs. (32) and (68), the velocity \(u_{\infty }\) can be expressed as a function of \(H_{\infty }/R\). The critical uniform film thickness for the appearance of recirculation regions, \(H_{\infty }^{\star }\), is obtained by solving \(u_{\infty }(0) = 0\), resulting in Eqs. (12) and (13) for the axisymmetric and planar configurations, respectively.

Appendix 5: Fitting laws for the model coefficients

The model coefficients Q in Eq. (30), G in Eq. (38), \(T_{f,r}\) and \(Z_{f,r}\) in Eq. (41) and \(M_{f,r}\), \(N_{f,r}\) and \(O_{f,r}\) in Eq. (44) can be well approximated by the rational function

$$\begin{aligned} \frac{a_3 \lambda ^3+a_2 \lambda ^2+a_1 \lambda + a_0 }{\lambda ^3+b_2 \lambda ^2 +b_1 \lambda + b_0}, \end{aligned}$$
(71)

where the constants \(a_i\) with \(i=0,..,3\) and \(b_j\) with \(j=0,..,2\) are given in Tables 1 and 2 for the axisymmetric and planar geometries, respectively.

Table 1 Coefficients of the fitting law for the axisymmetric configuration
Table 2 Coefficients of the fitting law for the planar configuration

Appendix 6: Additional results

For the sake of clarity, the results for \(\lambda = 0\) and 100 are shown in the appendix rather than in the main text, except for the normal viscous stresses jump, whose results for \(\lambda = 0\) are presented in the main text as for \(\lambda = 1\) the normal viscous stress jumps are small (Figs. 25, 26, 27, 28, 29, 30).

Fig. 25
figure 25

Uniform film thickness given by Eq. (30) (lines) and FEM-ALE numerical results (symbols) as a function of the droplet capillary number for \(\lambda = 0\) (a) and 100 (b) and both axisymmetric (blue solid line, full symbols) and planar (dashed red line, empty symbols) geometries. (Color figure online)

Fig. 26
figure 26

Minimum film thickness given by Eq. (38) (lines) and FEM-ALE numerical results (symbols) as a function of the droplet capillary number for \(\lambda = 0\) (a) and 100 (b) and both axisymmetric (blue solid line, full symbols) and planar (dashed red line, empty symbols) geometries. (Color figure online)

Fig. 27
figure 27

Curvature \(\kappa _f\) of the front meniscus predicted by the model Eq. (41) (lines) and FEM-ALE data (symbols) versus Ca for both axisymmetric (blue line, full symbols) and planar (red dashed line, empty symbols) geometries, where the viscosity ratio is \(\lambda = 0\) (a) and 100 (b). (Color figure online)

Fig. 28
figure 28

The rear counterpart \(\kappa _r\) of Fig. 27. (Color figure online)

Fig. 29
figure 29

Front pressure jump \(\Delta p_f\) given by Eq. (43) (solid lines) and front normal viscous stress jump \(\Delta \tau _{{zz}_{f}}\) by Eq. (44) (inset, solid lines) and FEM-ALE data (symbols) versus Ca for both axisymmetric (blue line, full symbols) and planar (red line, empty symbols) geometries, where the viscosity ratio is \(\lambda = 1\) (a) and 100 (b). The dashed lines correspond to the improved pressure jump model Eq. (46). Note the different scale in the insets. (Color figure online)

Fig. 30
figure 30

The rear counterpart, pressure jump \(\Delta p_r\) and normal viscous stress jump \(\Delta \tau _{{zz}_{r}}\), of Fig. 29. (Color figure online)

Fig. 31
figure 31

Pressure correction due to non-parallel flow effects at the rear (a) and front (b) outer sides of the interface for \(\lambda = 0.04\) (blue squares), 0.12 (red crosses), 1 (yellow circles), 15 (purple stars) and 50 (green diamonds) for the axisymmetric configuration. The results are obtained from FEM-ALE numerical simulations. (Color figure online)

Fig. 32
figure 32

Pressure correction due to non-parallel flow effects at the rear (a) and front (b) inner sides of the interface for \(\lambda = 0.04\) (blue squares), 0.12 (red crosses), 1 (yellow circles), 15 (purple stars) and 50 (green diamonds) for the axisymmetric configuration. The results are obtained from FEM-ALE numerical simulations. (Color figure online)

Appendix 7: Pressure corrections due to non-parallel flow

Some typical total stresses corrections at the outer and inner sides of the droplet interface as a function of Ca and for different viscosity ratios \(\lambda\) are shown in Figs. 31 and 32, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balestra, G., Zhu, L. & Gallaire, F. Viscous Taylor droplets in axisymmetric and planar tubes: from Bretherton’s theory to empirical models. Microfluid Nanofluid 22, 67 (2018). https://doi.org/10.1007/s10404-018-2084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2084-y

Keywords

Navigation