Skip to main content
Log in

Modes of vortex shedding from a rotary oscillating plate

旋转振荡板的尾流脱落模式

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The wake of a two-dimensional rotary oscillating plate of chord to thickness ratio B/H = 3.0 was investigated by smoke wire visualization and hot-wire measurement in a wind tunnel at Re = 1500 and oscillation amplitudes and reduced frequencies in the ranges of α = 2.5°–50° and feH/V = 0.02–0.25, respectively, where fe is oscillation frequency, V is on-coming wind speed. There are six modes of synchronized vortex shedding observed, including three new modes, i.e., 3P—three vortex pairs shed in one period, 2S2—two pairs of vortex twins shed in one period, and T—three vortices shed in one period of plate oscillation. The zone of every mode was found out and drawn on the amplitude-reduced frequency plane. Numerical simulation was carried out, and the simulated vorticity field, velocity profiles, and wake width were verified by experiment at typical oscillation conditions. At higher oscillation frequencies, the linear local unsteady term of inertial force dominates, and the simulated moment is an accurate linear function of rotary displacement and angular velocity. At lower frequencies, where 2T, 3P, and 2S2 modes of vortex shedding occur, however, the nonlinear convective term of inertial force dominates, and the simulated fluctuating moment deviates from Scanlan’s expression. Statistical results of numerical data show that the root-mean-square (r.m.s) value of fluctuating moment is an exponential function of single parameter η = αfeH/V.

摘要

在风洞中采用烟线流动显示和热线测量方法对弦厚比B/H = 3.0的二维旋转振荡矩形板尾流进行了实验研究, 研究的雷诺数Re = 1500, 振幅范围和折算频率范围分别为α = 2.5°~50°和feH/V = 0.02~0.25, 其中fe为振频, V为来流速度. 发现了6种同步旋涡脱落模式, 其中包括3种新的模式: 3P模式, 一个振荡周期内有三对转向相反的旋涡脱落; 2S2模式, 一个周期内每侧各有一个同向涡对脱落; T模式, 一个周期内有三个涡脱落. 找出了每个旋涡模式的存在区域, 并在振频-振幅平面上画出了模式区域图. 进行了数值模拟, 一些典型状态下所模拟的涡量场、 速度剖面和尾流宽度, 均与实验结果对比而得到了验证. 当振频较高时, 惯性力中线性的当地非定常项起决定作用, 模拟的扭转力矩是板旋转位移和旋转角速度的线性函数. 然而当振频较低时, 在不同振幅下分别存在2T、 3P和2S2模式旋涡脱落, 惯性力中的非线性对流项起主要作用, 模拟的脉动力矩偏离Scanlan公式. 数值模拟数据的统计结果显示, 脉动力矩均方根值是单参数η = αfeH/V的指数函数.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zhang, F. Xu, Z. Zhang, and X. Ying, Energy budget analysis and engineering modeling of post-flutter limit cycle oscillation of a bridge deck, J. Wind Eng. Ind. Aerodyn. 188, 410 (2019).

    Article  Google Scholar 

  2. M. Zhang, F. Xu, T. Wu, and Z. Zhang, Postflutter analysis of bridge decks using aerodynamic-describing functions, J. Bridge Eng. 25, 04020046 (2020).

    Article  Google Scholar 

  3. W. Li, S. Laima, X. Jin, W. Yuan, and H. Li, A novel long short-term memory neural-network-based self-excited force model of limit cycle oscillations of nonlinear flutter for various aerodynamic configurations, Nonlinear Dyn. 100, 2071 (2020).

    Article  Google Scholar 

  4. X. Ji, Y. G. Zhao, and Z. H. Lu, Uncertainty analysis of bridge flutter considering dependence and sampling error in flutter derivative measurements, Eng. Struct. 246, 113051 (2021).

    Article  Google Scholar 

  5. L. A. Sangalli, and A. L. Braun, A fluid-structure interaction model for numerical simulation of bridge flutter using sectional models with active control devices. Preliminary results, J. Sound Vib. 477, 115338 (2020).

    Article  Google Scholar 

  6. C. Grinderslev, M. Lubek, and Z. Zhang, Nonlinear fluid-structure interaction of bridge deck, CFD analysis and semi-analytical modeling, Wind Struct. 27, 381 (2018).

    Google Scholar 

  7. A. Larsen, and G. L. Larose, Dynamic wind effects on suspension and cable-stayed bridges, J. Sound Vib. 334, 2 (2015).

    Article  Google Scholar 

  8. C. H. K. Williamson, and A. Roshko, Vortex formation in the wake of an oscillating cylinder, J. Fluids Struct. 2, 355 (1988).

    Article  Google Scholar 

  9. L. Bruno, and D. Fransos, Evaluation of Reynolds number effects on flutter derivatives of a flat plate by means of a computational approach, J. Fluids Struct. 24, 1058 (2008).

    Article  Google Scholar 

  10. S. S. Law, Q. S. Yang, and Y. L. Fang, Experimental studies on possible vortex shedding in a suspension bridge. Part I. Structural dynamic characteristics and analysis model, Wind Struct. 10, 543 (2007).

    Article  Google Scholar 

  11. M. Li, S. Li, H. Liao, J. Zeng, and Q. Wang, Spanwise correlation of aerodynamic forces on oscillating rectangular cylinder, J. Wind Eng. Ind. Aerodyn. 154, 47 (2017).

    Article  Google Scholar 

  12. F. Ricciardelli, Effects of the vibration regime on the spanwise correlation of the aerodynamic forces on a 5:1 rectangular cylinder, J. Wind Eng. Ind. Aerodyn. 98, 215 (2010).

    Article  Google Scholar 

  13. F. Ehsan, and H. R. Bosch, Modeling the effect of spanwise coherence of aerodynamic forces on full-bridge response, Natl. Inst. Stand. Technol. Spec. Publ. 760, 3 (1989).

    Google Scholar 

  14. R. H. Scanlan, and J. J. Tomko, Airfoil and bridge deck flutter derivatives, ASCE J. Eng. Mech. 97, 1717 (1971).

    Google Scholar 

  15. A. Zasso, Flutter derivatives: Advantages of a new representation convention, J. Wind Eng. Ind. Aerodyn. 60, 35 (1996).

    Article  Google Scholar 

  16. M. Gu, R. Zhang, and H. Xiang, Identification of flutter derivatives of bridge decks, J. Wind Eng. Ind. Aerodyn. 84, 151 (2000).

    Article  Google Scholar 

  17. C. Neuhaus, S. Roesler, R. Höffer, M. Hortmanns, and W. Zahlten, in Identification of 18 flutter derivatives by forced vibration tests—a new experimental rig: Proceedings of the EACWE-5, Florence, Italy, 19 July–23 July, 2009.

  18. P. P. Sarkar, L. Caracoglia, F. L. Haan Jr., H. Sato, and J. Murakoshi, Comparative and sensitivity study of flutter derivatives of selected bridge deck sections, Part 1: Analysis of inter-laboratory experimental data, Eng. Struct. 31, 158 (2009).

    Article  Google Scholar 

  19. Y. H. Hong, Y. C. Hang, H. K. Kim, and H. S. Lee, in Identification of flutter derivatives from the forced and free vibration tests using EEE method: Proceedings of the World Congress on Advances in Civil, Environmental, and Materials Research (ACEM’12), Seoul, Korea, 26 August, 2012.

  20. F. Xu, X. Ying, and Z. Zhang, Insight into coupled forced vibration method to identify bridge flutter derivatives, Wind Struct. 22, 273 (2016).

    Article  Google Scholar 

  21. A. Š. Glumac, R. Höffer, and S. Brčić, Identification of flutter derivatives by forced vibration tests, Gradevinar. 69, 267 (2017).

    Google Scholar 

  22. B. Wu, Q. Wang, H. Liao, Y. Li, and M. Li, Flutter derivatives of a flat plate section and analysis of flutter instability at various wind angles of attack, J. Wind Eng. Ind. Aerodyn. 196, 104046 (2020).

    Article  Google Scholar 

  23. T. Takeuchi, and M. Matsumoto, Aerodynamic response characteristics of rectangular cylinders in tandem arrangement, J. Wind Eng. Ind. Aerodyn. 41, 565 (1992).

    Article  Google Scholar 

  24. K. Shimada, and T. Ishihara, Predictability of unsteady two-dimensional k-ε model on the aerodynamic instabilities of some rectangular prisms, J. Fluids Struct. 28, 20 (2012).

    Article  Google Scholar 

  25. H. Sato, S. Kusuhara, K. Ogi, and H. Matsufuji, Aerodynamic characteristics of super long-span bridges with slotted box girder, J. Wind Eng. Industrial AeroDyn. 88, 297 (2000).

    Article  Google Scholar 

  26. Š. Anina, H. Rüdiger, and B. Stanko, Numerical simulations and experimental validations of force coefficients and flutter derivatives of a bridge deck, J. Wind Eng. Ind. Aerodyn. 144, 172 (2015).

    Article  Google Scholar 

  27. K. Matsuda, M. Tokushige, and T. Iwasaki, Reynolds number effects on the steady and unsteady aerodynamic forces on the bridge deck sections of long-span suspension bridge, IHI Eng. Rev. 40, 12 (2007).

    Google Scholar 

  28. C. Norberg, Flow around rectangular cylinders: Pressure forces and wake frequencies, J. Wind Eng. Ind. Aerodyn. 49, 187 (1993).

    Article  Google Scholar 

  29. P. W. Bearman, and D. M. Trueman, An investigation of the flow around rectangular cylinders, Aeronaut. Q. 23, 229 (1972).

    Article  Google Scholar 

  30. A. Okajima, Strouhal numbers of rectangular cylinders, J. Fluid Mech. 123, 379 (1982).

    Article  Google Scholar 

  31. A. Okajima, and K. Kitajima, Numerical study on aeroelastic instability of cylinders with a circular and rectangular cross-section, J. Wind Eng. Ind. Aerodyn. 46–47, 541 (1993).

    Article  Google Scholar 

  32. J. Courchesne, and A. Laneville, A comparison of correction methods used in the evaluation of drag coefficient measurements for two-dimensional rectangular cylinders, J. Fluids Eng. 101, 506 (1979).

    Article  Google Scholar 

  33. T. Yang, and M. S. Mason, Aerodynamic characteristics of rectangular cylinders in steady and accelerating wind flow, J. Fluids Struct. 90, 246 (2019).

    Article  Google Scholar 

  34. Y. Nakamura, Y. Ohya, and H. Tsuruta, Experiments on vortex shedding from flat plates with square leading and trailing edges, J. Fluid Mech. 222, 437 (1991).

    Article  Google Scholar 

  35. H. Noda, and A. Nakayama, Free-stream turbulence effects on the instantaneous pressure and forces on cylinders of rectangular cross section, Exp. Fluids 34, 332 (2003).

    Article  Google Scholar 

  36. H. Nakaguchi, K. Hashimoto, and S. Muto, An experimental study on aerodynamic drag of rectangular cylinders, J. Jpn. Soc. Aeronaut. Eng. 16, 1 (1968).

    Article  Google Scholar 

  37. Y. Otsuki, K. Washizu, and A. Ohya, in Wind tunnel experiments on aerodynamic forces and pressure distributions of rectangular cylinders in a uniform flow: Proceedings of the Fifth Symposium on Wind Effects on Structures, 1978, pp. 169–176.

  38. D. Yi, and A. Okajima, Aerodynamic forces acting on an oscillating rectangular cylinder and the aeroelastic instabilities at moderate Reynolds numbers (Experiments), JSME Int. J. Ser. B. 39, 343 (1996).

    Article  Google Scholar 

  39. M. Gu, Y. Tang, and Y. Jin, Basic characteristics of torsional fluctuating wind force on rectangular super tall buildings (in Chinese), J. Build. Struct. 30, 191 (2009).

    Google Scholar 

  40. H. Choi, and J. Kanda, Proposed formulae for the power spectral densities of fluctuating lift and torque on rectangular 3-D cylinders, J. Wind Eng. Ind. Aerodyn. 46–47, 507 (1993).

    Article  Google Scholar 

  41. Y. Li, Q. Li, and Y. Dai, Mathematical models for tortional fluctuating wind loads on rectangular tall buildings (in Chinese), Eng. Mech. 32, 177 (2015).

    Google Scholar 

  42. S. Liang, Q. S. Li, S. Liu, L. Zhang, and M. Gu, Torsional dynamic wind loads on rectangular tall buildings, Eng. Struct. 26, 129 (2004).

    Article  Google Scholar 

  43. N. Lin, C. Letchford, Y. Tamura, B. Liang, and O. Nakamura, Characteristics of wind forces acting on tall buildings, J. Wind Eng. Ind. Aerodyn. 93, 217 (2005).

    Article  Google Scholar 

  44. N. Jauvtis, and C. H. K. Williamson, Vortex-induced vibration of a cylinder with two degrees of freedom, J. Fluids Struct. 17, 1035 (2003).

    Article  Google Scholar 

  45. R. I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys. 62, 40 (1985).

    Article  MathSciNet  Google Scholar 

  46. H. Sakamoto, H. Haniu, K. Takai, and Y. Obata, Characteristics of fluid forces acting on a rotary oscillating rectangular cylinder. rectangular cylinder with impinging leading-edge vortices, Trans. JSME B 62, 2541 (1996).

    Article  Google Scholar 

  47. H. Sakamoto, K. Takai, M. M. Alam, and M. Moriya, Suppression and characteristics of flow-induced vibration of rectangular prisms with various width-to-height ratios, Trans. Built Environ. 56, 67 (2001).

    Google Scholar 

  48. R. H. Scanlan, and J. J. Tomko, Airfoil and bridge deck flutter derivatives, ASCE J. Eng. Mech. 97, 1717 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanping Shao  (邵传平).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11572305).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Pan, J. & Shao, C. Modes of vortex shedding from a rotary oscillating plate. Acta Mech. Sin. 38, 321481 (2022). https://doi.org/10.1007/s10409-021-09033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09033-x

Keywords

Navigation