Skip to main content
Log in

Neutrophil Migration in Opposing Chemoattractant Gradients Using Microfluidic Chemotaxis Devices

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Neutrophils migrating in tissue respond to complex overlapping signals generated by a variety of chemotactic factors (CFs). Previous studies suggested a hierarchy between bacteria-derived CFs and host-derived CFs but could not differentiate neutrophil response to potentially equal host-derived CFs (IL-8 and LTB4). This paper reports neutrophil migration in conflicting gradients of IL-8 and LTB4 using a microfluidic chemotaxis device that can generate stable and well-defined gradients. We quantitatively characterized the movement of cells from time-lapse images. Neutrophils migrate more efficiently toward single IL-8 gradients than single LTB4 gradients as measured by the effective chemotactic index (ECI). In opposing gradients of IL-8 and LTB4, neutrophils show obvious chemotaxis toward a distant gradient, consistent with previous reports. When an opposing gradient of LTB4 is present, neutrophils show less effective chemotaxis toward IL-8 than when they are in a gradient of IL-8 alone. In contrast, the chemotactic response of neutrophils to LTB4 is not reduced in opposing gradients as compared to that in a single LTB4 gradient. These results indicate that the presence of one host-derived CF modifies the response of neutrophils to a second CF suggesting a subtle hierarchy between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baggiolini, M. Chemokines and leukocyte traffic. Nature 392:565–568, 1998.

    Article  CAS  PubMed  Google Scholar 

  2. Behar, T. N., A. E. Schaffner, C. A. Colton, R. Somogyi, Z. Olah, C. Lehel, and J. L. Barker. GABA-induced chemokinesis and NGF-induced chemotaxis of embryonic spinal cord neurons. J. Neurosci. 14:29–38, 1994.

    CAS  PubMed  Google Scholar 

  3. Boyden, S. V. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes. J. Exp. Med. 115:453, 1962.

    Article  CAS  PubMed  Google Scholar 

  4. Chung, C. Y., S. Funamoto, and R. A. Firtel. Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem. Sci. 26:557–566, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Crooks, S. W., and R. A. Stockley. Leukotriene B4. Int. J. Biochem. Cell Biol. 30:173–178, 1998.

    Article  CAS  PubMed  Google Scholar 

  6. Dekker, L. V., L. V. Dekker, and A. W. Segal. Signal transduction: Signals to move cells. Science 287:982–985, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Dertinger, S. K. W., D. T. Chiu, N. L. Jeon, and G. M. Whitesides. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73:1240–1246, 2001.

    Article  CAS  Google Scholar 

  8. Foxman, E. F., J. J. Campbell, and E. C. Butcher. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139:1349–1360, 1997.

    Article  CAS  PubMed  Google Scholar 

  9. Foxman, E. F., E. J. Kunkel, and E. C. Butcher. Integrating conflicting chemotactic signals: The role of memory in leukocyte navigation. J. Cell Biol. 147:577–588, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Glading, A., D. A. Lauffenburger, and A. Wells. Cutting to the chase: Calpain proteases in cell motility. Trends Cell Biol. 12:46–54, 2002.

    Article  CAS  PubMed  Google Scholar 

  11. Heit, B., S. Tavener, E. Raharjo, and P. Kubes. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol. 159:91–102, 2002.

    Article  CAS  PubMed  Google Scholar 

  12. Jeon, N. L., S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides. Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316, 2000.

    CAS  Google Scholar 

  13. Knapp, D. M., E. F. Helou, and R. T. Tranquillo. A fibrin or collagen gel assay for tissue cell chemotaxis: Assessment of fibroblast chemotaxis to GRGDSP. Exp. Cell Res. 247:543–553, 1999.

    Article  CAS  PubMed  Google Scholar 

  14. Kubes, P. Introduction: The complexities of leukocyte recruitment. Semin. Immunol. 14:65–72, 2002.

    Article  CAS  PubMed  Google Scholar 

  15. Lin, F., C. M. C. Nguyen, S. J. Wang, W. Saadi, S. P. Gross, and N. L. Jeon. Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration. Biochem. Biophys. Res. Commun. 319:576–581, 2004.

    Article  CAS  PubMed  Google Scholar 

  16. Nelson, R. D., P. G. Quie, and R. L. Simmons. Chemotaxis under agarose: A new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J. Immunol. 115:1650–1656, 1975.

    CAS  PubMed  Google Scholar 

  17. Olson, T. S., and K. Ley. Chemokines and chemokine receptors in leukocyte trafficking. Am. J. Physiol. Regulat. Integr. Comp. Physiol. 283:R7–R28, 2002.

    CAS  Google Scholar 

  18. Parent, C. A., B. J. Blacklock, W. M. Froehlich, D. B. Murphy, and P. N. Devreotes. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95:81–91, 1998.

    CAS  PubMed  Google Scholar 

  19. Ridley, A. J. Rho family proteins: Coordinating cell responses. Trends Cell Biol. 11:471–477, 2001.

    CAS  PubMed  Google Scholar 

  20. Woolhouse, I. S., D. L. Bayley, and R. A. Stockley. Sputum chemotactic activity in chronic obstructive pulmonary disease: Effect of {alpha}1-antitrypsin deficiency and the role of leukotriene B4 and interleukin 8. Thorax 57:709–714, 2002.

    CAS  PubMed  Google Scholar 

  21. Zigmond, S. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75:606–616, 1977.

    CAS  PubMed  Google Scholar 

  22. Zigmond, S. H. How WASP regulates actin polymerization. J. Cell Biol. 150:117F–120F, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noo Li Jeon PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, F., Nguyen, C.MC., Wang, SJ. et al. Neutrophil Migration in Opposing Chemoattractant Gradients Using Microfluidic Chemotaxis Devices. Ann Biomed Eng 33, 475–482 (2005). https://doi.org/10.1007/s10439-005-2503-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-2503-6

Keywords

Navigation