Skip to main content

Advertisement

Log in

Electrospinning of Nanocomposite Fibrillar Tubular and Flat Scaffolds with Controlled Fiber Orientation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Electrospinning was used in innovative electrospinning rigs to obtain tubular and flat fibrous structures with controlled fiber orientation with the aim to be used as scaffolds for biomedical applications, more specifically in the tissue engineering of vascular and orthopedic grafts. Gelatine and hydroxyapatite (HA)–gelatine solutions of various compositions were tried and electrospinning of continuous fibers was maintained for gelatine and up to 0.30 g/g HA–gelatine solutions in 2,2,2-trifluoroethanol (TFE). Small diameter tubular scaffolds were electrospun with axial fiber orientation and flat scaffolds were cut from fiber mats electrospun around a wired drum substrate. The fibrous mats were crosslinked using a glutaraldehyde solution and subjected to image analysis of SEM micrographs, water swelling tests, and mechanical testing. Fiber diameter in the electrospun scaffolds could be varied depending on the feed solution concentration and composition whereas fiber orientation was affected by the processing conditions. After crosslinking, the 0.30 g/g HA–gelatine scaffolds absorbed the minimum amount of water after 48 h soaking and they had the highest Young’s modulus, 60 MPa, and highest strength, 3.9 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Asran, A. S., S. Henning, and G. H. Michler. Poly(vinyl alcohol)-collagen-hydroxyapatite biocomposite nanofibrous scaffold: mimicking the key features of natural bone at the nanoscale level. Polymer 51:868–876, 2010.

    Article  CAS  Google Scholar 

  2. Bank, A. J., R. F. Wilson, S. H. Kubo, J. E. Holte, T. J. Dresing, and H. Wang. Direct effects of smooth muscle relaxation and contraction on in vivo human brachial artery elastic properties. Circ. Res. 77:1008–1016, 1995.

    PubMed  CAS  Google Scholar 

  3. Barbon, B., C. Militello, A. De Rossi, B. Martella, and E. Ballotta. Autologous great saphenous vein tailored graft to replace an infected prosthetic graft in the groin. Vasc. Endovasc. Surg. 41(4):358–361, 2007.

    Article  Google Scholar 

  4. Bishop, A., C. Balazsi, J. H. C. Yang, and P.-I. Gouma. Biopolymer-hydroxyapatite composite coatings prepared by electrospinning. Polym. Adv. Technol. 17:902–906, 2006.

    Article  CAS  Google Scholar 

  5. Bos, G. W., A. A. Poot, T. Geugeling, W. G. van Aken, and J. Feijen. Small-diameter vascular graft prostheses: current status. Arch. Physiol. Biochem. 106(2):100–115, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Bronzino, J. D. (Ed.). The Biomedical Engineering Handbook (2nd ed.), Vol. I. Boca Raton, FL: CRS Press, 2000.

  7. Feng, L., S. H. Li, H. J. Li, J. Zhai, Y. L. Song, L. Jiang, and D. B. Zhu. Super hydrophobic surface of aligned polyacrylonitrile nanofibres. Angew. Chem. Int. Ed. 41:1221–1223, 2002.

    Article  CAS  Google Scholar 

  8. Geroulakos, G., S. Kakkos, and D. Sellu. Autologous vein graft for aneurysm repair in a contaminated field. Eur. J. Vasc. Endovasc. Surg. 29:247–249, 2005.

    Article  PubMed  CAS  Google Scholar 

  9. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  PubMed  CAS  Google Scholar 

  10. Huang, Z.-M., Y. Z. Zhang, S. Ramakrishma, and C. T. Lin. Electrospinning and mechanical characterisation of gelatine nanofibers. Polymer 45:5361–5368, 2004.

    Article  CAS  Google Scholar 

  11. Ilona, B. D. Structure and Function of Elastin and Collagen. Budapest: Akademiaai Kiado, 1966.

    Google Scholar 

  12. Ishaug, S. L., G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J. Biomed. Mater. Res. 36:17–28, 1997.

    Article  PubMed  CAS  Google Scholar 

  13. Jung, Y., S.-S. Kim, Y. H. Kim, S.-H. Kim, B.-S. Kim, S. Kim, C. Y. Choi, and S. H. Kim. A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials 26:6314–6322, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Kasuga, T., Y. Ota, M. Nogami, and Y. Abe. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22:19–23, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Lamprou, D., P. Zhdan, F. Labeed, and C. Lekakou. Gelatine and gelatine/elastin nanocomposites for vascular grafts: processing and characterisation. J. Biomater. Appl. 2010 (online).

  16. Lekakou, C., D. Lamprou, U. Vidyarthi, E. Karopoulou, and P. Zhdan. Structural hierarchy of biomimetic materials for tissue engineered vascular and orthopaedic grafts. J. Biomed. Mater. Res. Part B: Appl. Biomater. 85B(2):461–468, 2008.

    Article  CAS  Google Scholar 

  17. Lekakou, C., P. Wilson, Y. C. Chau, and A. A. Salifu. Electrospinning of polymer nanocomposites. In: Proc. ICCM17, Edinburg, 2009.

  18. L’Heureux, N., J.-C. Stoclet, F. A. Auger, G. J.-L. Lagaud, L. Germain, and R. Andriantsitohaina. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J. 15:515–524, 2001.

    Article  PubMed  Google Scholar 

  19. Levick, J. R. An Introduction to Cardiovascular Physiology (3rd ed.). Oxford: Oxford University Press, 2000.

    Google Scholar 

  20. Li, W.-J., C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60:613–621, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. Ma, J., X. He, and E. Jabbari. Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly(L-lactide) nanofibers. Ann. Biomed. Eng. 31(1):14–25, 2011.

    Article  Google Scholar 

  22. Marieb, E. N. Human Anatomy and Physiology. The Benjamin/Cummings Series in the Life Sciences (3rd ed.). Reading, MA: Benjamin-Cummings Pub Co, 1995.

    Google Scholar 

  23. Mikos, A. G., Y. Bao, L. G. Cima, D. E. Ingber, J. P. Vacanti, and R. Langer. Preparation of poly(glycolic acid) bonded fibre structures for cell attachment and transplantation. J. Biomed. Mater. Res. 27:183–189, 1993.

    Article  PubMed  CAS  Google Scholar 

  24. Mikos, A. G., A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer, D. N. Winslow, and J. P. Vacanti. Preparation and characterisation of poly(L-lactic acid) foams. Polymer 35:1068–1077, 1994.

    Article  CAS  Google Scholar 

  25. Mouthuy, P.-A., H. Ye, J. Triffitt, G. Oommen, and Z. Cui. Physico-chemical characterization of functional electrospun scaffolds for bone and cartilage tissue engineering. Proc. IMechE Part H: J. Eng. Med. 224:1401–1414, 2010.

    Article  CAS  Google Scholar 

  26. Ondarcuhu, T., and C. Joachim. Drawing a single nanofibre over hundreds of microns. Europhys. Lett. 42:215–220, 1998.

    Article  CAS  Google Scholar 

  27. O’Rourke, M. F. Arterial Function in Health and Disease. London: Churchill Livingstone, 1982.

    Google Scholar 

  28. Rainer, A., C. Spadaccio, P. Sedati, F. De Marco, S. Carotti, M. Lusini, G. Yadala, A. Di Martino, S. Morini, M. Chello, E. Covino, V. Denaro, and M. Trombetta. Electrospun hydroxyapatite-functionalized PLLA scaffold: potential applications in sternal bone healing. Ann. Biomed. Eng. 2011 (online).

  29. Rentsch, B., A. Hofmann, A. Breier, C. Rentsch, and D. Scharnweber. Embroidered and surface modified polycaprolactone-co-lactide scaffolds as bone substitute: in vitro characterization. Ann. Biomed. Eng. 37(10):2118–2128, 2009.

    Article  PubMed  Google Scholar 

  30. Sayers, R. D., S. Raptis, M. Berce, and J. H. Miller. Long-term results of femorotibial bypass with vein or polytetrafluoroethylene. Br. J. Surg. 85:934–938, 1998.

    Article  PubMed  CAS  Google Scholar 

  31. Shang, S., F. Yang, X. Cheng, X. F. Walboomers, and J. A. Jansen. The effect of electrospun fibre alignment on the behaviour of rat periodontal ligament cells. Eur. Cells Mater. 19:180–192, 2010.

    CAS  Google Scholar 

  32. Smith, L. A., and P. X. Ma. Nano-fibrous scaffolds for tissue engineering. Colloids Surf. B 39:125–131, 2004.

    Article  CAS  Google Scholar 

  33. Solomon, E. P. Human Anatomy and Physiology (2nd ed.). London, Philadelphia (PA): Saunders College, 1995.

    Google Scholar 

  34. Teo, W. E., and S. Ramakrishna. A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106, 2006.

    Article  PubMed  CAS  Google Scholar 

  35. Tortora, G. J., and S. R. Grabowski. Principles of Anatomy and Physiology (8th ed.). New York: HarperCollins College, 1996.

    Google Scholar 

  36. Vidyarthi, U., P. Zhdan, C. Gravanis, and C. Lekakou. Gelatine-hydroxyapatite nanocomposites for orthopaedic applications. In: Current Themes in Engineering Science 2007, Vol. 1045, pp. 81–90, 2008.

  37. Whitesides, G. M., and M. Boncheva. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. USA 99:4769–4774, 2002.

    Article  PubMed  CAS  Google Scholar 

  38. Williams, M. R., T. Mikulin, J. Lemberger, B. R. Hopkinson, and G. S. Makin. Five year experience using PTFE vascular grafts for lower limb ischaemia. Ann. R. Coll. Surg. Engl. 67:152–155, 1985.

    PubMed  CAS  Google Scholar 

  39. Zhang, Y., H. Ouyang, C. T. Lim, S. Ramakrishna, and Z.-M. Huang. Electrospinning of gelatin fibres and gelatin/PCL composite fibrous scaffolds. J. Biomed. Mater. Res. Part B: Appl. Biomater. 72B:156–165, 2005.

    Article  CAS  Google Scholar 

  40. Zulliger, M. A., A. Rachev, and N. Stergiopoulos. A constitutive formulation of arterial mechanics including vascular smooth muscle tone. Am. J. Physiol. Heart Circ. Physiol. 287:H1335–H1343, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lekakou.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salifu, A.A., Nury, B.D. & Lekakou, C. Electrospinning of Nanocomposite Fibrillar Tubular and Flat Scaffolds with Controlled Fiber Orientation. Ann Biomed Eng 39, 2510–2520 (2011). https://doi.org/10.1007/s10439-011-0350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0350-1

Keywords

Navigation