Skip to main content
Log in

A Three-Dimensional Model of Human Lung Airway Tree to Study Therapeutics Delivery in the Lungs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Surfactant instillation into the lungs is used to treat several respiratory disorders such as neonatal respiratory distress syndrome (NRDS). The success of the treatments significantly depends on the uniformity of distribution of the instilled surfactant in airways. This is challenging to directly evaluate due to the inaccessibility of lung airways and great difficulty with imaging them. To tackle this problem, we developed a 3D physical model of human lung airway tree. Using a defined set of principles, we first generated computational models of eight generations of neonates’ tracheobronchial tree comprising the conducting zone airways. Similar to native lungs, these models contained continuously-branching airways that rotated in the 3D space and reduced in size with increase in the generation number. Then, we used additive manufacturing to generate physical airway tree models that precisely replicated the computational designs. We demonstrated the utility of the physical models to study surfactant delivery in the lungs and showed the effect of orientation of the airway tree in the gravitational field on the distribution of instilled surfactant between the left and right lungs and within each lung. Our 3D lung airway tree model offers a novel tool for quantitative studies of therapeutics delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anderson, J. C., R. C. Molthen, C. A. Dawson, S. T. Haworth, J. L. Bull, M. R. Glucksberg, and J. B. Grotberg. Effect of ventilation rate on instilled surfactant distribution in the pulmonary airways of rats. J. Appl. Physiol. 97:45–56, 2004.

    Article  PubMed  Google Scholar 

  2. Andreeva, A. V., M. A. Kutuzov, and T. A. Voyno-Yasenetskaya. Regulation of surfactant secretion in alveolar type II cells. Am. J. Physiol. Lung Cell Mol. Physiol. 293:259–271, 2007.

    Article  CAS  Google Scholar 

  3. Atefi, E., J. A. Mann, Jr, and H. Tavana. Ultralow interfacial tensions of aqueous two-phase systems measured using drop shape. Langmuir. 30:9691–9699, 2014.

    Article  CAS  PubMed  Google Scholar 

  4. Baroud, C. N., S. Tsikata, and M. Heil. The propagation of low-viscosity fingers into fluid-filled branching networks. J. Fluid Mech. 546:285–294, 2006.

    Article  Google Scholar 

  5. Borgas, M. S., and J. B. Groberg. Monolayer flow on a thin film. J. Fluid Mech. 193:151–170, 1988.

    Article  CAS  Google Scholar 

  6. Cassidy, K. J., J. L. Bull, M. R. Glucksberg, C. A. Dawson, S. T. Haworth, R. Hirschl, N. Gavriely, and J. B. Grotberg. A rat lung model of instilled liquid transport in the pulmonary airways. J. Appl. Physiol. 90:1955–1967, 2001.

    Article  CAS  PubMed  Google Scholar 

  7. Cassidy, K. J., N. Gavriely, and J. B. Grotberg. Liquid plug flow in straight and bifurcating tubes. J. Biomech. Eng. 123:580–589, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. Choi, J. W., H.-C. Kim, and R. Wicker. Multi-material stereolithography. J. Mater. Proc. Technol. 211:318–328, 2011.

    Article  CAS  Google Scholar 

  9. Copploe, A., M. Vatani, R. Amini, J. W. Choi, and H. Tavana. Engineered airway models to study liquid plug splitting at bifurcations: effects of orientation and airway size. J. Biomech. Eng. 2018. https://doi.org/10.1115/1.4040456.

    Article  PubMed  Google Scholar 

  10. Filoche, M., C. F. Tai, and J. B. Grotberg. Three-dimensional model of surfactant replacement therapy. Proc. Natl. Acad. Sci. USA. 112:9287–9292, 2015.

    Article  CAS  PubMed  Google Scholar 

  11. Fujioka, H., and J. B. Grotberg. Steady propagation of a liquid plug in a two-dimensional channel. J. Biomech. Eng. 126:567–577, 2004.

    Article  PubMed  Google Scholar 

  12. Fujioka, H., and J. B. Grotberg. The steady propagation of a surfactant-laden liquid plug in a two-dimensional channel. Phys. Fluids. 17:082102, 2005.

    Article  CAS  Google Scholar 

  13. Gaver, D. P., and J. B. Groberg. Droplet spreading on a thin viscous film. J. Fluid Mech. 235:399–414, 1992.

    Article  CAS  Google Scholar 

  14. Gaver, III, D. P., R. W. Samsel, and J. Solway. Effects of surface tension and viscosity on airway reopening. J. Appl. Physiol. 69:74–85, 1990.

    Article  PubMed  Google Scholar 

  15. Ghadiali, S. N., and D. P. Gaver, 3rd. An investigation of pulmonary surfactant physicochemical behavior under airway reopening conditions. J. Appl. Physiol. 88:493–506, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Grotberg, J. B. Respiratory fluid mechanics and transport processes. Annu. Rev. Biomed. Eng. 3:421–457, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Grotberg, J. B. Respiratory fluid mechanics. Phys. Fluids. 23:21301, 2011.

    Article  CAS  Google Scholar 

  18. Halpern, D., O. E. Jensen, and J. B. Grotberg. A theoretical study of surfactant and liquid delivery into the lung. J. Appl. Physiol. 85:333–352, 1998.

    Article  CAS  PubMed  Google Scholar 

  19. Hope, R. L., R. N. Roth, and P. A. Jacobs. Adaptive slicing with sloping layer surfaces. Rapid Prototyp. J. 3:89–98, 1997.

    Article  Google Scholar 

  20. Kitaoka, H., R. Takaki, and B. Suki. A three-dimensional model of the human airway tree. J. Appl. Physiol. 87:2207–2217, 1999.

    Article  CAS  PubMed  Google Scholar 

  21. Lasalvia, M., S. Castellani, P. D’Antonio, G. Perna, A. Carbone, A. L. Colia, A. B. Maffione, V. Capozzi, and M. Conese. Human airway epithelial cells investigated by atomic force microscopy: a hint to cystic fibrosis epithelial pathology. Exp. Cell Res. 348:46–55, 2016.

    Article  CAS  PubMed  Google Scholar 

  22. Lewis, J. F., and R. A. Veldhuizen. The future of surfactant therapy during ALI/ARDS. Semin. Respir. Crit. Care Med. 27:377–388, 2006.

    Article  PubMed  Google Scholar 

  23. Lista, G., F. Castoldi, S. Bianchi, and F. Cavigioli. Surfactant and mechanical ventilation. Acta Biomed. 83(Suppl 1):21–23, 2012.

    PubMed  Google Scholar 

  24. Perun, M. L., and D. P. Gaver, 3rd. An experimental model investigation of the opening of a collapsed untethered pulmonary airway. J. Biomech. Eng. 117:245–253, 1995.

    Article  CAS  PubMed  Google Scholar 

  25. Petrak, D., E. Atefi, L. Yin, W. Chilian, and H. Tavana. Automated, spatio-temporally controlled cell microprinting with polymeric aqueous biphasic system. Biotechnol. Bioeng. 111:404–412, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. Phalen, R. F., H. C. Yeh, G. M. Schum, and O. G. Raabe. Application of an idealized model to morphometry of the mammalian tracheobronchial tree. Anat. Rec. 190:167–176, 1978.

    Article  CAS  PubMed  Google Scholar 

  27. Polin, R. A., and W. A. Carlo. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 133:156–163, 2014.

    Article  PubMed  Google Scholar 

  28. Saad, S. M., Z. Policova, E. J. Acosta, and A. W. Neumann. Effect of surfactant concentration, compression ratio and compression rate on the surface activity and dynamic properties of a lung surfactant. Biochim. Biophys. Acta. 103–16:2012, 1818.

    Google Scholar 

  29. Sabourin, E., S. A. Houser, and J. H. Bøhn. Adaptive slicing using stepwise uniform refinement. Rapid Prototyp. J. 2:20–26, 1996.

    Article  Google Scholar 

  30. Sauret, V., P. M. Halson, I. W. Brown, J. S. Fleming, and A. G. Bailey. Study of the three-dimensional geometry of the central conducting airways in man using computed tomographic (CT) images. J. Anat. 200:123–134, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stevens, T. P., and R. A. Sinkin. Surfactant replacement therapy. Chest. 131:1577–1582, 2007.

    Article  PubMed  Google Scholar 

  32. Szpinda, M., M. Daroszewski, A. Wozniak, A. Szpinda, and C. Mila-Kierzenkowska. Tracheal dimensions in human fetuses: an anatomical, digital and statistical study. Surg. Radiol. Anat. 34:317–323, 2012.

    Article  PubMed  Google Scholar 

  33. Tavana, H., D. Huh, J. B. Groberg, and S. Takayama. Microfluidics, lung surfactant, and respiratory disorders. Lab. Med. 40:203–209, 2009.

    Article  Google Scholar 

  34. Tavana, H., C. H. Kuo, Q. Y. Lee, B. Mosadegh, D. Huh, P. J. Christensen, J. B. Grotberg, and S. Takayama. Dynamics of liquid plugs of buffer and surfactant solutions in a micro-engineered pulmonary airway model. Langmuir. 26:3744–3752, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Veldhuizen, E. J., and H. P. Haagsman. Role of pulmonary surfactant components in surface film formation and dynamics. Biochim. Biophys. Acta. 1467:255–270, 2000.

    Article  CAS  PubMed  Google Scholar 

  36. Weibel, E. R., and D. M. Gomez. Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science. 137:577–585, 1962.

    Article  CAS  PubMed  Google Scholar 

  37. West, J. B. Respiratory Physiology: The Essentials. Oxford: Blackwell Scientific, 2015.

    Google Scholar 

  38. Zheng, Y., H. Fujioka, J. C. Grotberg, and J. B. Grotberg. Effects of inertia and gravity on liquid plug splitting at a bifurcation. J. Biomech. Eng. 128:707–716, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided by a University of Akron Firestone Fellowship to H.T and a grant CA216413 from National Institutes of Health.

Conflict of interest

The authors do not have any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavana.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 7872 kb)

Supplementary material 2 (MOV 10029 kb)

Supplementary material 3 (DOCX 5899 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Copploe, A., Vatani, M., Choi, JW. et al. A Three-Dimensional Model of Human Lung Airway Tree to Study Therapeutics Delivery in the Lungs. Ann Biomed Eng 47, 1435–1445 (2019). https://doi.org/10.1007/s10439-019-02242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02242-z

Keywords

Navigation