Skip to main content

Advertisement

Log in

Evaluation of an Engineered Hybrid Matrix for Bone Regeneration via Endochondral Ossification

  • Bioengineering and Enabling Technologies
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Despite its regenerative ability, long and segmental bone defect repair remains a significant orthopedic challenge. Conventional tissue engineering efforts induce bone formation through intramembranous ossification (IO) which limits vascular formation and leads to poor bone regeneration. To overcome this challenge, a novel hybrid matrix comprised of a load-bearing polymer template and a gel phase is designed and assessed for bone regeneration. Our previous studies developed a synthetic ECM, hyaluronan (HA)–fibrin (FB), that is able to mimic cartilage-mediated bone formation in vitro. In this study, the well-characterized HA–FB hydrogel is combined with a biodegradable polymer template to form a hybrid matrix. In vitro evaluation of the matrix showed cartilage template formation, cell recruitment and recruited cell osteogenesis, essential stages in endochondral ossification. A transgenic reporter-mouse critical-defect model was used to evaluate the bone healing potential of the hybrid matrix in vivo. The results demonstrated host cell recruitment into the hybrid matrix that led to new bone formation and subsequent remodeling of the mineralization. Overall, the study developed and evaluated a novel load-bearing graft system for bone regeneration via endochondral ossification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aghajanian, P., and S. Mohan. The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res. 6:19, 2018.

    PubMed  PubMed Central  Google Scholar 

  2. Almubarak, S., et al. Tissue engineering strategies for promoting vascularized bone regeneration. Bone 83:197–209, 2016.

    CAS  PubMed  Google Scholar 

  3. Amini, A. R., D. J. Adams, C. T. Laurencin, and S. P. Nukavarapu. Optimally Porous and Biomechanically Compatible Scaffolds for Large-Area Bone regeneration. Tissue Eng. A 18(13–14):1376–1388, 2012.

    CAS  Google Scholar 

  4. Amini, A. R., C. T. Laurencin, and S. P. Nukavarapu. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 40(5):363–408, 2012.

    PubMed  PubMed Central  Google Scholar 

  5. Amini, A. R., and S. P. Nukavarapu. Oxygen-tension controlled matrices for enhanced osteogenic cell survival and performance. Ann. Biomed. Eng. 42(6):1261–1270, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Amini, A. R., T. O. Xu, R. M. Chidambaram, and S. P. Nukavarapu. Oxygen tension-controlled matrices with osteogenic and vasculogenic cells for vascularized bone regeneration in vivo. Tissue Eng. A 22(7–8):610–620, 2016.

    CAS  Google Scholar 

  7. Anderson, J. M., and M. S. Shive. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28(1):5–24, 1997.

    CAS  PubMed  Google Scholar 

  8. Aravamudhan, A., D. M. Ramos, J. Nip, I. Kalajzic, and S. G. Kumbar. Micro-nanostructures of cellulose-collagen for critical sized bone defect healing. Macromol. Biosci. 18(2):1700263, 2018.

    Google Scholar 

  9. Bahney, C. S., et al. Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation. J. Bone Miner. Res. 29(5):1269–1282, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Behonick, D. J., et al. Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration. PLoS ONE 2:11, 2007.

    Google Scholar 

  11. Deckers, M. M. L., M. Karperien, C. van der Bent, T. Yamashita, S. E. Papapoulos, and C. W. G. M. Löwik. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 141(5):1667–1674, 2000.

    CAS  PubMed  Google Scholar 

  12. Dennis, S. C., C. J. Berkland, L. F. Bonewald, and M. S. Detamore. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo. Tissue Eng. B 21(3):247–266, 2015.

    Google Scholar 

  13. Douglas, T. E. L., et al. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine. J. Tissue Eng. Regen. Med. 8(11):906–918, 2014.

    CAS  PubMed  Google Scholar 

  14. Farrell, E., et al. In-vivo generation of bone via endochondral ossification by in vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskelet. Disord. 12(1):31, 2011.

    PubMed  PubMed Central  Google Scholar 

  15. Francois, E., D. Dorcemus, and S. Nukavarapu. 1 - Biomaterials and scaffolds for musculoskeletal tissue engineering. In: Regenerative Engineering of Musculoskeletal Tissues and Interfaces, edited by S. P. Nukavarapu, J. W. Freeman, and C. T. Laurencin. Sawston: Woodhead Publishing, 2015, pp. 3–23.

    Google Scholar 

  16. Freeman, F. E., M. G. Haugh, and L. M. McNamara. Investigation of the optimal timing for chondrogenic priming of MSCs to enhance osteogenic differentiation in vitro as a bone tissue engineering strategy. J. Tissue Eng. Regen. Med. 10(4):E250–E262, 2016.

    CAS  PubMed  Google Scholar 

  17. Gabay, O., et al. Sirt1-deficient mice exhibit an altered cartilage phenotype. Jt. Bone Spine Rev. Rhum. 80(6):613–620, 2013.

    CAS  Google Scholar 

  18. Gohil, S. V., D. J. Adams, P. Maye, D. W. Rowe, and L. S. Nair. Evaluation of rhBMP-2 and bone marrow derived stromal cell mediated bone regeneration using transgenic fluorescent protein reporter mice. J. Biomed. Mater. Res. A 102(12):4568–4580, 2014.

    PubMed  PubMed Central  Google Scholar 

  19. Gohil, S. V., S. B. Brittain, H.-M. Kan, H. Drissi, D. W. Rowe, and L. S. Nair. Evaluation of enzymatically crosslinked injectable glycol chitosan hydrogel. J. Mater. Chem. B 3(27):5511–5522, 2015.

    CAS  Google Scholar 

  20. Goldberg, V. M., and S. Stevenson. Natural history of autografts and allografts. Clin. Orthop. 225:7–16, 1987.

    Google Scholar 

  21. Harada, N., et al. Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Biomaterials 35(27):7800–7810, 2014.

    CAS  PubMed  Google Scholar 

  22. Igwe, J. C., P. E. Mikael, and S. P. Nukavarapu. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. J. Tissue Eng. Regen. Med. 8(2):131–142, 2014.

    CAS  PubMed  Google Scholar 

  23. Jahangir, A., R. Nunley, S. Mehta, and A. Sharan. Bone-graft substitutes in orthopaedic surgery. AAOS 2:35–37, 2008.

    Google Scholar 

  24. Karande, T., and C. Agrawal. Function and Requirement of Synthetic Scaffolds in Tissue Engineering. Boca Raton: CRC Press, 2008.

    Google Scholar 

  25. Knuth, C., J. Witte-Bouma, Y. Ridwan, E. Wolvius, and E. Farrell. Mesnchymal stem cell-mediated enchodondral ossification utilising micropellets and brief chondrogenic priming. Eur. Cell. Mater. 34:142–161, 2017.

    CAS  PubMed  Google Scholar 

  26. Lin, D., Y. Chai, Y. Ma, B. Duan, Y. Yuan, and C. Liu. Rapid initiation of guided bone regeneration driven by spatiotemporal delivery of IL-8 and BMP-2 from hierarchical MBG-based scaffold. Biomaterials 196:122–137, 2019.

    CAS  PubMed  Google Scholar 

  27. Mikael, P. E., H. S. Kim, and S. P. Nukavarapu. Hybrid extracellular matrix design for cartilage-mediated bone regeneration. J. Biomed. Mater. Res. B 106(1):300–309, 2018.

    CAS  Google Scholar 

  28. Mikael, P. E., et al. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Biomed. Mater. 9(3):035001, 2014.

    PubMed  Google Scholar 

  29. Mikael, P. E., et al. A potential translational approach for bone tissue engineering through endochondral ossification. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 3925–3928.

  30. Mueller, M. B., and R. S. Tuan. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 58(5):1377–1388, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nukavarapu, S. P., et al. Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromolecules 9(7):1818–1825, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rezwan, K., Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431, 2006.

    CAS  PubMed  Google Scholar 

  33. Roddy, E., M. R. DeBaun, A. Daoud-Gray, Y. P. Yang, and M. J. Gardner. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur. J. Orthop. Surg. Traumatol. 28(3):351–362, 2018.

    PubMed  Google Scholar 

  34. Sathi, G. A., et al. Early initiation of endochondral ossification of mouse femur cultured in hydrogel with different mechanical stiffness. Tissue Eng. C 21(6):567–575, 2015.

    CAS  Google Scholar 

  35. Scotti, C., et al. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc. Natl. Acad. Sci. USA. 107(16):7251–7256, 2010.

    CAS  PubMed  Google Scholar 

  36. Scotti, C., et al. Engineering of a functional bone organ through endochondral ossification. Proc. Natl. Acad. Sci. USA 110(10):3997–4002, 2013.

    CAS  PubMed  Google Scholar 

  37. Sheehy, E. J., T. Mesallati, L. Kelly, T. Vinardell, C. T. Buckley, and D. J. Kelly. Tissue engineering whole bones through endochondral ossification: regenerating the distal phalanx. BioResearch Open Access 4(1):229–241, 2015.

    PubMed  PubMed Central  Google Scholar 

  38. Sheehy, E. J., T. Vinardell, C. T. Buckley, and D. J. Kelly. Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater. 9(3):5484–5492, 2013.

    CAS  PubMed  Google Scholar 

  39. Snyder, T. N., K. Madhavan, M. Intrator, R. C. Dregalla, and D. Park. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. J. Biol. Eng. 8:10, 2014.

    PubMed  PubMed Central  Google Scholar 

  40. Swetha, M., K. Sahithi, A. Moorthi, N. Srinivasan, K. Ramasamy, and N. Selvamurugan. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol. 47(1):1–4, 2010.

    CAS  PubMed  Google Scholar 

  41. Thompson, E. M., A. Matsiko, E. Farrell, D. J. Kelly, and F. J. O’Brien. Recapitulating endochondral ossification: a promising route to in vivo bone regeneration. J. Tissue Eng. Regen. Med. 9(8):889–902, 2015.

    CAS  PubMed  Google Scholar 

  42. Vallet-Regí, M., and J. M. González-Calbet. Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 32(1):1–31, 2004.

    Google Scholar 

  43. Villa, M. M., L. Wang, J. Huang, D. W. Rowe, and M. Wei. Visualizing osteogenesis in vivo within a cell-scaffold construct for bone tissue engineering using two-photon microscopy. Tissue Eng. C 19(11):839–849, 2013.

    CAS  Google Scholar 

  44. Vining, N. C., W. J. Warme, and V. S. Mosca. Comparison of structural bone autografts and allografts in pediatric foot surgery. J. Pediatr. Orthop. 32(7):714–718, 2012.

    Google Scholar 

  45. Visser, J., et al. Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles. Biomaterials 37:174–182, 2015.

    CAS  PubMed  Google Scholar 

  46. Vo, T. N., et al. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials 83:1–11, 2016.

    CAS  PubMed  Google Scholar 

  47. Xin, X., et al. A site-specific integrated Col2.3GFP reporter identifies osteoblasts within mineralized tissue formed in vivo by human embryonic stem cells. Stem Cells Transl. Med. 3(10):1125–1137, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xin, X., et al. Histological criteria that distinguish human and mouse bone formed within a mouse skeletal repair defect. J. Histochem. Cytochem. 2019. https://doi.org/10.1369/0022155419836436.

    Article  PubMed  Google Scholar 

  49. Xu, T. O., H. S. Kim, T. Stahl, and S. P. Nukavarapu. Self-neutralizing PLGA/magnesium composites as novel biomaterials for tissue engineering. Biomed. Mater. 13(3):035013, 2018.

    PubMed  PubMed Central  Google Scholar 

  50. Yang, W., S. K. Both, G. J. V. M. van Osch, Y. Wang, J. A. Jansen, and F. Yang. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation. Acta Biomater. 13:254–265, 2015.

    CAS  PubMed  Google Scholar 

  51. Yang, W., F. Yang, Y. Wang, S. K. Both, and J. A. Jansen. In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater. 9(1):4505–4512, 2013.

    CAS  PubMed  Google Scholar 

  52. Zhao, X., et al. Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv. Funct. Mater. 26(17):2809–2819, 2016.

    CAS  Google Scholar 

  53. Zhou, Y., F. Chen, S. T. Ho, M. A. Woodruff, T. M. Lim, and D. W. Hutmacher. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials 28(5):814–824, 2007.

    CAS  PubMed  Google Scholar 

  54. Zhou, H., and J. Lee. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7(7):2769–2781, 2011.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors acknowledge funding from NSF EFRI (#1332329) and NSF EFMA (#1640008). Dr. Nukavarapu also acknowledges support from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (#R01EB020640).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syam P. Nukavarapu.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikael, P.E., Golebiowska, A.A., Xin, X. et al. Evaluation of an Engineered Hybrid Matrix for Bone Regeneration via Endochondral Ossification. Ann Biomed Eng 48, 992–1005 (2020). https://doi.org/10.1007/s10439-019-02279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02279-0

Keywords

Navigation