Skip to main content

Advertisement

Log in

A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

To mitigate the spread of schistosomiasis, a deterministic human-bovine mathematical model of its transmission dynamics accounting for contaminated water reservoirs, including treatment of bovines and humans and mollusciciding is formulated and theoretically analyzed. The disease-free equilibrium is locally and globally asymptotically stable whenever the basic reproduction number \(R_0<1\), while global stability of the endemic equilibrium is investigated by constructing a suitable Lyapunov function. To support the analytical results, parameter values from published literature are used for numerical simulations and where applicable, uncertainty analysis on the non-dimensional system parameters is performed using the Latin Hypercube Sampling and Partial Rank Correlation Coefficient techniques. Sensitivity analysis to determine the relative importance of model parameters to disease transmission shows that the environment-related parameters namely, \(\varepsilon _s\) (snails shedding rate of cercariae), \(p_s\) (probability that cercariae shed by snails survive), c (fraction of the contaminated environment sprayed by molluscicides) and \(\mu _c\) (mortality rate of cercariae) are the most significant to mitigate the spread of schistosomiasis. Mollusciciding, which directly impacts the contaminated environment as a single control strategy is more effective compared to treatment. However, concurrently applying mollusciciding and treatment will yield a better outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adenowo AF, Oyinloye BE, Ogunyinka BI, Kappo AP (2015) Impact of human schistosomiasis in sub-Saharan Africa. Braz J Inf Dis 19(2):196–205

    Google Scholar 

  • Ali A, Erko B, Wolder M, Kloos H (2006) Schistosomiasis. In: Berhane Y, Mariam DH, Kloos H (eds) Epidemiology and ecology health and disease in Ethiopia. Addis Ababa, Ethiopia

    Google Scholar 

  • Allen EJ, Victory HD (2003) Modelling and simulation of a schistosomiasis infection with biological control. Acta Trop 87:251–267

    Google Scholar 

  • Bala S, Gimba B (2019) Global sensitivity analysis to study the impacts of bed-Nets, drug treatment, and their efficacies on a two-Strain malaria model. Math Comput Appl 24(1):32

    Google Scholar 

  • Benvenuti L, Farina L (2004) Eigenvalue regions for positive systems. Syst Control Lett 51(3–4):325–330

    Google Scholar 

  • Bichara DM, Guiro A, Iggidr A, Ngom D (2019) State and parameter estimation for a class of schistosomiasis models. Math Biosci 315:108226

    Google Scholar 

  • Birkhoff G, Rota GC (1998) Ordinary differential equations. John Wiley and Sons, New York, 4th ed,

  • Blower SM, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev 62(2):229–243

    Google Scholar 

  • Bont JD, Vercruysse J (1997) The epidemiology and control of cattle schistosomiasis. Parasit Today 13(7):255–62

    Google Scholar 

  • Bustinduy AL, King CH (2014) Schistosomiasis: In: Farrar J, Hotez PJ, Junghanss T, Kang G, Lalloo D, White NJ (eds) Manson’s tropical infectious diseases, 23rd edn, pp 698-725

  • Castillo-Chavez C, Feng Z, Huang W (2002) On the computation of \(R_0\) and its role on global stability. Mathematical Approaches for Emerging and Reemerging Infectious Diseases. An Introduction. Springer 1:229–250

  • Castle GD, Mills GA, Gravell A, Jones L, Townsend I, Camerone DG, Fones GR (2017) Review of the molluscicide metaldehyde in the environment. Environ Sci Water Res Technol 3:415

    Google Scholar 

  • Chen Z, Zou L, Shen D, Zhang W, Ruan S (2010) Mathematical modelling and control of Schistosomiasis in Hubei Province, China. Acta Trop 115:119–125

    Google Scholar 

  • Chiyaka ET, Garira W (2009) Mathematical analysis of the transmission dynamics of schistosomiasis in the human-snail hosts. J Biol Syst 17(3):397–423

    Google Scholar 

  • Coelho PMZ, Caldeira RL (2016) Critical analysis of molluscicide application in schistosomiasis control programs in Brazil. Infect Dis Poverty 5(1):57

    Google Scholar 

  • Diaby M (2015) Stability analysis of a Schistosomiasis transmission model with control strategies. Biomath 1:1–13

    Google Scholar 

  • Ding C, Qiu Z, Zhu H (2015) Multi-host transmission dynamics of schistosomiasis and its optimal control. Math Biosci Eng 12(5):983–1006

    Google Scholar 

  • Feng Z, Eppert A, Milner FA, Minchella DJ (2004) Estimation of parameters governing the transmission dynamics of schistosomes. Appl Math Lett 17:1105–1112

    Google Scholar 

  • Fitzgibbon WE, Morgan JJ, Webb GF, Wu X (2019) Spatial models of vector-host epidemics with directed movement of vectors over long distances. Math Biosci 312:77–87

    Google Scholar 

  • Gao S, Cao H, He Y, Liu Y, Zhang X, Yang G, Zhou X (2017) The basic reproductive ratio of Barbour’s two-host schistosomiasis model with seasonal fluctuations. Parasites Vect 10:42

    Google Scholar 

  • Gomes EC, Leal-Neto OB, Albuquerque J, Silva HP, Barbosa CS (2012) Schistosomiasis transmission and environmental change: a spatio-temporal analysis in Porto de Galinhas. Pernambuco-Brazil. Int J Health Geogr 11:51

    Google Scholar 

  • Halstead NT, Hoover CM, Arakala A, Civitello DJ, De Leo GA, Gambhir M, Johnson SA, Jouanard N, Loerns KA, McMahon TA, Ndione RA, Nguyen K, Raffel TR, Remais JV, Riveau G, Sokolow SH, Rohr JR (2018) Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nat Commun 9:837

    Google Scholar 

  • Hoare A, Regan DG, Wilson DP (2008) Sampling and sensitivity analyses tools (SaSAT) for computational modelling. Theor Biol Med Model 5:4

    Google Scholar 

  • Hoover CM, Rumschlag SL, Strgar L, Arakala A, Gambhir M, de Leo GA, Sokolow SH, Rohr JR, Remais JV (2020) Effects of agrochemical pollution on schistosomiasis transmission: a systematic review and modelling analysis. Lancet Planet Health 4:e280–e291

    Google Scholar 

  • Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J (2008) Helminth infections: the great neglected tropical diseases. J Clin Invest 118:1311–1321

    Google Scholar 

  • Huang Q, Gurarie D, Ndeffo-Mbah M, Li E, King CH (2020) Schistosoma transmission in a dynamic seasonal environment and its impact on the effectiveness of disease control. J Infec Dis jiaa746

  • Kadaleka S, Abelman S, Mwamtobe PM, Tchuenche JM (2020) Optimal control analysis of a human-bovine schistosomiasis model. J Biol Syst Accepted. https://doi.org/10.1142/S0218339021500017

    Article  Google Scholar 

  • Kamgang JC, Sallet G (2008) Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium. Math Biosci 213(1):1–12

    Google Scholar 

  • Kerie Y, Seyoum Z (2016) Bovine and ovine schistosomiaisis prevalence and associated host factors in selected sites of South Achefer district northwest Ethiopia. Thai J Vet Med 46(4):561–567

    Google Scholar 

  • LaSalle JP (1976) The Stability of dynamical systems. Regional Conference Series in Applied Mathematics, SIAM, Philadelpha, Pa, USA

  • Lengeler C, Utzinger J Tanner (2002) Screening for Schistosomiasis with questionnaires. Trends Parasit 18(9:375–377

    Google Scholar 

  • Li Y, Teng Z, Ruan S, Li M, Feng X (2017) A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. Math Biosci Eng 14(5–6):1279–1299

    Google Scholar 

  • Li L, Zhou Y, Wang T, Zhang S, Chen G, Zhao G, He N, Zhang Z, Yang D, Yang Y, Yang Y, Yuan H, Chen Y, Jiang Q (2019) Elimination of schistosoma japonicum transmission in China: a Case of schistosomiasis control in the severe epidemic Aaea of Anhui Province. Intern J Environ Res Publ Health 16:138

    Google Scholar 

  • Lulie B, Guadu T (2014) Bovine schistosomiasis: a threat in public health perspectives in Bahir Dar Town. Northwest Ethiopia. Acta Parasit Globalis 5(1):1–6

    Google Scholar 

  • Mangal TD, Paterson S, Fenton A (2008) Predicting the impact of long-term temperature changes on the epidemiology and control of schistosomiasis: a mechanistic model. PLoS ONE 3(1):e1438

    Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    Google Scholar 

  • McCluskey CC (2006) Lyapunov functions for tuberculosis models with fast and slow progression. Math Biosci Eng 3(4):603–614

    Google Scholar 

  • Modena CM, Lima W, Coelho PMZ (2008) Wild and domesticated animals as reservoirs of Schistosomiasis mansoni in Brazil. Acta Trop 108:242–244

    Google Scholar 

  • Mtisi E, Rwezaura H, Tchuenche JM (2009) A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete Cont Dyn Syst B 12:827–864

    Google Scholar 

  • Mukandavire Z, Gumel AB, Garira W, Tchuenche JM (2009) Mathematical analysis of a model for HIV-malaria co-infection. Math Biosci Eng 6:333–362

    Google Scholar 

  • Pedro SA, Tchuenche JM (2010) HIV/AIDS dynamics: impact of economic classes with transmission from poor clinical settings. J Theor Biol 267:471–485

    Google Scholar 

  • Remais J (2010) Modelling environmentally-mediated infectious diseases of humans: Transmission dynamics of schistosomiasis in China. In: Michael E, Spear RC (eds) Modelling parasite transmission and control. Advances in experimental medicine and biology, vol 673. Springer, New York

  • Riley S, Carabin H, Belisle P, Joseph L, Tallo V, Balolong E, Willingham L, Fernandez TJ, Gonzales RO, Olveda R, McGarvey ST (2008) Multi-host transmission dynamics of schistosoma japonicum in Samar Province, the Philipines. PLoS Med 5(1):e18

    Google Scholar 

  • Ronoh M, Chirove F, Pedro SA, Tchamga MSS, Madubueze CE, Madubueze SC, Addawe J, Mwamtobe PM, Mbra KR (2021) Modelling the spread of schistosomiasis in humans with environmental transmission. Appl Math Model 95:159–175

    Google Scholar 

  • Samsuzzoha M, Singh M, Lucy D (2013) Uncertainty and sensitivity analysis of the basic reproduction number of a vaccinated epidemic model of influenza. Appl Math Model 37(3):903–915

    Google Scholar 

  • Secor WE (2014) Water-based interventions for Schistosomiasis Control. Path Global Health 108(5):246–254

    Google Scholar 

  • Spear RC, Hubbard A, Liang S, Seto E (2002) Disease transmission models for public health decision making: toward an approach for designing intervention strategies for Schistosomiasis japonica. Environ Health Perspect 10:907–915

    Google Scholar 

  • Spear RC, Seto E, Remais J, Carlton EJ, Davis G, Qiu D, Zhou X, Liang S (2006) Fighting waterborne infectious diseases. Science 314:1081–1083

    Google Scholar 

  • Sun L, Wang W, Liang Y, Tian Z, Hong Q, Yang K, Yan G, Dai J, Gao Y (2011) Effect of an integrated control strategy for schistosomiasis japonica in the lower reaches of the Yangtze River, China: an evaluation from 2005 to 2008. Parasites Vect 4:243

    Google Scholar 

  • Tchuenche JM, Bauch CT (2012) Can culling to prevent monkeypox infection be counter-productive? Scenarios from a theoretical model. J Biol Syst 20(3):259–283

    Google Scholar 

  • Traore B, Ousmane K, Sangare B (2019) Global dynamics of a seasonal mathematical model of schistosomiasis transmission with general incidence function. J Biol Syst 27(1):19–49

    Google Scholar 

  • Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equibria for compartmental models of disease transmission. Math Biosci 180(1):28–48

    Google Scholar 

  • Williams GM, Sleigh AC, Li Y, Feng Z, Davis GM, Chen H, Ross AGP, Bergquist R, McManus DP (2002) Mathematical modelling of schistosomiasis japonica: comparison of control strategies in the People’s Republic of China. Acta Trop 82(2):253–262

    Google Scholar 

  • Wu J, Dhingra R, Gambhir M, Remais JV (2013) Sensitivity analysis of infectious disease models: methods, advances and their application. J R Soc Interface 10(86):20121018

    Google Scholar 

  • Xiang J, Chen H, Ishikawa HA (2013) A mathematical model for the transmission of Schistosoma japonicum in consideration of seasonal water level fluctuations of Poyang Lake in Jiangxi, China. Parasit Inter 62:118–126

    Google Scholar 

  • Yang GJ, Liu L, Zhu HR, Griffiths SM, Tanner M, Bergquist R, Utzinger J, Zhou XN (2014) China’s sustained drive to eliminate neglected tropical diseases. Lancet Infect Dis 14:881–892

    Google Scholar 

Download references

Acknowledgements

S. Kadaleka thanks the University of Malawi (Malawi Polytechnic) for financial support. The authors acknowledge support of the School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, in the production of this manuscript. The authors are grateful to the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirley Abelman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadaleka, S., Abelman, S. & Tchuenche, J.M. A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding. Acta Biotheor 69, 511–541 (2021). https://doi.org/10.1007/s10441-021-09416-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-021-09416-0

Keywords

Navigation