Skip to main content
Log in

Experimental and Numerical Studies on the Failure Mechanism of the Composite Scarf Joints with Bonding Flaws

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Bonded composite scarf joints with bonding flaws were tested to study their tensile behaviors. Based on the failure modes obtained by various observation methods, an improved numerical methodology with appropriate model width was developed, considering the marginal low stiffness regions in ± 45° plies. The results show that the modelling approach provides accurate predictions on the strength, stiffness, and the failure modes considering variations in scarf angle, flaw size, and flaw location. Marginal low stiffness regions in ± 45° plies influence the stress distributions in the adhesive layer and the failure mode. Adhesive layer failure is the main cause of the final fracture of the pristine and the defective scarf joints, and damages within composite adherend especially interlaminar delamination, may accelerate the growth of the bondline stress at an early stage. The traditional damage tolerance design approach for bonded composite joints needs to be improved to avoid confusing and adventurous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Kwon, Y.W., Marron, A.: Scarf joints of composite Materials: Testing and Analysis. Appl Compos Mater 16, 365–378 (2009)

    Article  CAS  Google Scholar 

  2. Hart-Smith L, McDonnell-Douglas Corp LB.: CA, Adhesive-bonded scarf and stepped-lap joints. Long Beach, CA: McDonnell-Douglas Corp.; (1973)

  3. Baker, A., Dutton, S., Kelly, D.: Composite materials for aircraft structures, 2nd edn. American Institute of Aeronautics and Astronautics Inc., Virginia (2004)

    Google Scholar 

  4. Nie, H.C., Xu, J.F., Guan, Z.D., Li, Z.S., Ji, Z.J., Tan, R.M.: Tensile behavior of scarf joints after impact in different locations. Journal of Beijing University of Aeronautics and Astronautics 42(11), 2306–2320 (2016)

    Google Scholar 

  5. Katnam, K.B., Silva, L.F.M.D., Young, T.M.: Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Prog. Aerosp. Sci. 6, 26–42 (2013)

    Article  Google Scholar 

  6. Archer E, Mcilhagger A.: Repair of damaged aerospace composite structures. Polymer Composites in the Aerospace Industry, 393–412 (2014)

  7. Califano, A., Chandarana, N., Grassia, L., D’Amore, A., Soutis, C.: Damage Detection in Composites by Artificial Neural Networks Trained By Using in Situ Distributed Strains. Appl Compos Mater (2020). https://doi.org/10.1007/s10443-020-09829-z

    Article  Google Scholar 

  8. Wu, C., Chen, C., He, L., Yan, W.Y.: Comparison on damage tolerance of scarf and stepped-lap bonded composite joints under quasi-static loading. Compos. B 155, 19–30 (2018)

    Article  CAS  Google Scholar 

  9. de Moura, M.F.S.F., Daniaud, R., Magalhães, A.G.: Simulation of mechanical behaviour of composite bonded joints containing strip defects. Int. J. Adhes. Adhes. 26(6), 464–473 (2006)

    Article  Google Scholar 

  10. Wang CH, Goh JY, Ahamed J, Glynn A, Georgiadis S.: Damage tolerance analysis of adhesively bonded repairs to composites structures. Jeju, Korea: 18th Intern Conference Compos Mater. (2011)

  11. FAA.: Composite aircraft structure: advisory circular (AC) 20–107B, Change 1, FAA, (2010)

  12. Gunnion, A.J., Herszberg, I.: Parametric study of scarf joints in composite structures. Compos. Struct. 7(1–4), 364–376 (2006)

    Article  Google Scholar 

  13. Kumar, S.B., Sridhar, I., Sivashanker, S., Osiyemi, S.O., Bag, A.: Tensile failure of adhesively bonded CFRP composite scarf joints. Mater. Sci. Eng., B 132, 113–120 (2006)

    Article  CAS  Google Scholar 

  14. Zhang, Q., Cheng, X.Q., Cheng, Y.J., Li, W.D., Hu, R.W.: Investigation of tensile behavior and influence factors of composite-to-metal 2D-scarf bonded joint. Eng. Struct. 180, 284–294 (2019)

    Article  Google Scholar 

  15. Goh, J.Y., Georgiadis, S., Orifici, A.C., Wang, C.H.: Effects of bondline flaws on the damage tolerance of composite scarf joints. Compos A Appl Sci Manuf 55, 110–119 (2013)

    Article  CAS  Google Scholar 

  16. Seshadri, M., Ramji, M.: Prediction of mechanical behaviour of adhesively bonded CFRP scarf jointed specimen under tensile loading using localised DIC and CZM. Int. J. Adhes. Adhes. 89, 88–108 (2019)

    Article  Google Scholar 

  17. Hayes-Griss, J.M., Orifici, A.C., Khatibi, A.A.: An improved progressive failure modelling and damage tolerant design methodology for composite scarf joints with bondline flaws. Compos. A (2020). https://doi.org/10.1016/j.compositesa.2020.105776

    Article  Google Scholar 

  18. Turon, A., Davila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74(10), 1665–1682 (2007)

    Article  Google Scholar 

  19. ASTM D5528–13.: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites; (2013)

  20. ASTM D7905/D7905M-19.: Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites; (2019)

  21. ASTM D6671/D6671M-19.: Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites; (2019)

  22. Dassault Systemes.: ABAQUS 6.13 analysis user's guide: elements, interactions. Technical report abaqus 6.13 documentation, Simulia Corp.; (2013).

  23. Ouyang, T., Sun, W., Bao, R., Tan, R.M.: Effects of matrix cracks on delamination of composite laminates subjected to low-velocity impact. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.113354

    Article  Google Scholar 

  24. Da´vila CG, Camanho PP, de Moura MFSF.: Mixed-Mode decohesion elements for analyses of progressive delamination. In:Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC structures. Structural dynamics and materials conference, Seattle, Washington; April 16–19, (2001)

  25. Kou, J.F., Xu, F., Guo, J.P., Xu, Q.L.: Damage Laws of cohesive zone model and selection of the parameters. J Mech Strength 33(5), 714–718 (2011)

    Google Scholar 

  26. Hashin, Z.: Failure criteria for unidirectional fiber composite. J Appl Mech 47, 329–334 (1980)

    Article  Google Scholar 

  27. Laffan, M.J., Pinho, S.T., Robinson, P., McMillan, A.J.: Translaminar fracture toughness testing of composites: a review. Polymer Test 31(3), 481–489 (2012)

    Article  CAS  Google Scholar 

  28. Guo X. Study on damage tolerance characteristics of aircraft composite adhesive repaird structure. Beijing University of Aeronautics and Astronautics; PhD thesis. (2015)

  29. Hu, X.M., Han, K.C., Xu, F., Xie, W., Kou, J.F.: Mixed-Mode Bending Test for Fracture Toughness of Composite Bonding Adhesive Layer. Adv Mater Res 415–417, 2240–2243 (2012)

    Google Scholar 

  30. Hart-Smith LJ. Adhesively bonded joints in aircraft structures. Handbook of adhesion technology. Springer; 1101–47 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Guan, Z., Wang, X. et al. Experimental and Numerical Studies on the Failure Mechanism of the Composite Scarf Joints with Bonding Flaws. Appl Compos Mater 28, 1399–1425 (2021). https://doi.org/10.1007/s10443-021-09921-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09921-y

Keywords

Navigation