Skip to main content
Log in

New convergence analysis of a primal-dual algorithm with large stepsizes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider a primal-dual algorithm for minimizing \(f({\mathbf {x}})+h\square l({\mathbf {A}}{\mathbf {x}})\) with Fréchet differentiable f and l. This primal-dual algorithm has two names in literature: Primal-Dual Fixed-Point algorithm based on the Proximity Operator (PDFP2O) and Proximal Alternating Predictor-Corrector (PAPC). In this paper, we prove its convergence under a weaker condition on the stepsizes than existing ones. With additional assumptions, we show its linear convergence. In addition, we show that this condition (the upper bound of the stepsize) is tight and can not be weakened. This result also recovers a recently proposed positive-indefinite linearized augmented Lagrangian method. In addition, we apply this result to a decentralized consensus algorithm PG-EXTRA and derive the weakest convergence condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  2. Boţ, R.I., Csetnek, E.R., Heinrich, A., Hendrich, C.: On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems. Math. Program. 150(2), 251–279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bot, R.I., Hendrich, C.: A douglas–Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23(4), 2541–2565 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal–dual algorithm. Math. Program. 159(1-2), 253–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, P., Huang, J., Zhang, X.: A primal–dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 29(2), 025011 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for minimization of the sum of three convex separable functions. Fixed Point Theory and Applications 2016(1), 54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Combettes, P.L., Pesquet, J.C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var Anal 20(2), 307–330 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Condat, L.: A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Set-Valued Var Anal 25(4), 829–858 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Drori, Y., Sabach, S., Teboulle, M.: A simple algorithm for a class of nonsmooth convex–concave saddle-point problems. Oper. Res. Lett. 43 (2), 209–214 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamedani, E.Y., Aybat, N.S.: A primal-dual algorithm for general convex-concave saddle point problems. (2018)

  14. Hamedani, E.Y., Jalilzadeh, A., Aybat, N., Shanbhag, U.: Iteration complexity of randomized primal-dual methods for convex-concave saddle point problems. arXiv:1806.04118 (2018)

  15. He, B., Ma, F., Yuan, X.: Optimal proximal augmented Lagrangian method and its application to full Jacobian splitting for multi-block separable convex minimization problems. IMA J. Numer. Anal. 40(2), 1188–1216 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hien, L.T.K., Zhao, R., Haskell, W.B.: An inexact primal-dual smoothing framework for large-scale non-bilinear saddle point problems. arXiv:1711.03669 (2017)

  17. Jaggi, M., Smith, V., Takác, M., Terhorst, J., Krishnan, S., Hofmann, T., Jordan, M.I.: Communication-Efficient Distributed Dual Coordinate Ascent. In: Advances in Neural Information Processing Systems, pp. 3068–3076 (2014)

  18. Ko, S., Yu, D., Won, J.H.: Easily parallelizable and distributable class of algorithms for structured sparsity, with optimal acceleration. J. Comput. Graph. Stat. 28(4), 821–833 (2019)

    Article  MathSciNet  Google Scholar 

  19. Komodakis, N., Pesquet, J.C.: Playing with duality: an overview of recent primal-dual approaches for solving large-scale optimization problems. IEEE Signal Process. Mag. 32(6), 31–54 (2015)

    Article  Google Scholar 

  20. Latafat, P., Patrinos, P.: Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators. Comput. Optim. Appl. 68(1), 57–93 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Y., Yan, M.: On linear convergence of two decentralized algorithms. J. Optim. Theory Appl. (2019)

  22. Li, Z., Shi, W., Yan, M.: A decentralized proximal-gradient method with network independent step-sizes and separated convergence rates. IEEE Trans. Signal Process. 67(17), 4494–4506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Loris, I., Verhoeven, C.: On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty. Inverse Probl. 27(12), 125007 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Petryshyn, W.: Construction of fixed points of demicompact mappings in Hilbert space. J. Math. Anal. Appl. 14(2), 276–284 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ryu, E.K., Boyd, S.: Primer on monotone operator methods. Appl Comput Math 15(1), 3–43 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Shi, W., Ling, Q., Wu, G., Yin, W.: A proximal gradient algorithm for decentralized composite optimization. IEEE Trans. Signal Process. 63 (22), 6013–6023 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vũ, B. C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, T., Yuan, K., Ling, Q., Yin, W., Sayed, A.H.: Decentralized consensus optimization with asynchrony and delays. IEEE Trans. Signal Inf. Process Netw. 4(2), 293–307 (2018)

    MathSciNet  Google Scholar 

  29. Xu, Y.: First-order methods for constrained convex programming based on linearized augmented Lagrangian function. INFORMS Journal on Optimization to appear (2020)

  30. Xu, Y.: Primal-dual stochastic gradient method for convex programs with many functional constraints. SIAM J. Optim. 30(2), 1664–1692 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yan, M.: A new primal-dual algorithm for minimizing the sum of three functions with a linear operator. J. Sci. Comput. 76(3), 1698–1717 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, J., Yuan, X.: Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math Comput 82 (281), 301–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for the helpful comments and suggestions that improve this paper.

Funding

This work was supported in part by the National Science Foundation (NSF) grants DMS-1621798 and DMS-2012439, the Natural Science Foundation of China grant 62001167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yan.

Additional information

Communicated by: Russell Luke

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yan, M. New convergence analysis of a primal-dual algorithm with large stepsizes. Adv Comput Math 47, 9 (2021). https://doi.org/10.1007/s10444-020-09840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09840-9

Keywords

Mathematics Subject Classification (2010)

Navigation