Skip to main content
Log in

Adsorption study of an industrial dye by an organic clay

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this study, the adsorption of an industrial dye Supranol Yellow 4GL onto Cetyltrimethylammonium-bentonite (CTAB-bentonite) is investigated. The organobentonite is synthesised by exchanging cetyltrimethylammonium cations (CTAB) with inorganic ions on the surface of bentonite. The adsorption of Supranol Yellow 4GL onto organobentonite is found to be maximum when the concentration of CTAB exchanged is 100% according to the cation exchange capacity of the clay (CEC). The modification of organobentonite is examined using XRD and FTIR techniques.

The effect of the process parameters such as: contact time, adsorbate concentration, adsorbent dose, pH and temperature are reported. Nearly 1200 seconds of contact time are found to be sufficient for the adsorption to reach equilibrium. The pseudo second order model is used to describe the kinetic data, and the rate constant is therefore evaluated. The dye adsorption to organobentonite is characterized by monolayer isotherm and caused by adsorption with relatively strong uptake. The Langmuir and Freundlich models adsorption are applied to describe the isotherm equilibrium and to determine its constants. The Langmuir and Freundlich models agree well with the experimental data with a adsorption capacity of 0.5 g of dye per g of organobentonite. A better fixation was obtained at acidic pH. The effect of temperature on the adsorption of dye has been also studied and the thermodynamic parameters ΔH, ΔS, ΔG, were determined. Organobentonite is found to be effective for removing Supranol Yellow 4GL dye from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

the initial concentration of dye, g/L

C e :

the concentration of dye in solution after equilibrium, g/L

V :

the total volume of the solution, L

m :

the mass of the adsorbent, g

q e :

the amounts of dye adsorbed at equilibrium time, g/g

q :

the amounts of dye adsorbed at time t, g/g

K 1 :

the pseudo-first order rate constant, sec−1

K 2 :

the pseudo-second order rate constant, sec−1

q m :

the amount of solute adsorbed per weight of adsorbent in forming a complete monolayer on the surface, g/g

b :

Langmuir constant related to the energy, L/g

R L :

dimensionless separation factor

k and n:

Freundlich constants

k d :

the partition coefficient, L/g

References

  • Al-Asheh, S., Duvniajak, Z.: Sorption of cadmium and other heavy metals by pine bark. Hazard. Mater. J. 56, 35–51 (1997)

    Article  CAS  Google Scholar 

  • Allen, S.J., Brown, P.A.: Isotherm analyses for single component and multi-component metal sorption onto lignite. Chem. Technol. Biotechnol. J. 62, 17–24 (1995)

    Article  CAS  Google Scholar 

  • Arami, M., Yousefi Limaee, N., Mohammad Mahmoodi, N., Salman Tabrizi, N.: Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies. Colloid Interface Sci. J. 288, 371–376 (2005)

    Article  CAS  Google Scholar 

  • Barrer, R.M., Macleod, D.M.: Activation of montmorillonite by ion exchange and adsorption complexes of tetraalkylammonium montmorillonites. Trans. Faraday Soc. 51, 1290–1300 (1955)

    Article  CAS  Google Scholar 

  • Bouberka, Z., Kacha, S., Kameche, M., Elmaleh, S., Derriche, Z.: Sorption study of an acid dye from aqueous solutions using modified clays. Hazard. Mater. J. B 119, 117–124 (2005)

    Article  CAS  Google Scholar 

  • Boyd, S.A., Mortland, M.M., Chiou, C.T.: Adsorption characteristics of organic compounds on hexadecyltrimethylammonium smectite. Soil Sci. Soc. Am. J. 52, 652–657 (1988)

    Article  CAS  Google Scholar 

  • Brower, G.R., Reed, G.D.: Economical pre-treatment for colour removal from textile dye wastes. In: Proceedings of 41st Purdue University Industrial Waste Conference, vol. 41, pp. 612–616 (1987)

  • Chiou, M.S., Chuang, G.S.: Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads. Chemosphere 62, 731–740 (2006)

    Article  CAS  Google Scholar 

  • Chiu, Y.C., Huang, L.N., Uang, C.M., Huang, J.F.: Determination of the cation exchange capacity of clay minerals by potentiometric titration using divalent cation electrodes. J. Colloid Surf. 46, 327 (1990)

    Article  CAS  Google Scholar 

  • Chung, Y.C., Li, Y.H., Chen, C.C.: Pollutant removal from wastewater using the biopolymer chitosan at different molecular weights. Environ. Sci. Health J. 40, 1775–1790 (2005)

    CAS  Google Scholar 

  • Degs, Y.A., Khraisheh, M.A.M., Allen, S.J., Ahmad, M.N.: Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res. 34, 927–931 (2000)

    Article  Google Scholar 

  • Dentel, S.K., Bottero, J.Y., Khatib, K., Demougeot, H., Duguet, J.P., Anselme, C.: Sorption of tannic acid, phenol, and 2,4,5-trichlorophenol on organoclays. Water Res. 29, 1273–1280 (1995)

    Article  CAS  Google Scholar 

  • El Guendi, M.S.: Adsorption kinetics of cationic dyes stuffs onto natural clay. Adsorpt. Sci. Technol. 13, 295–303 (1995)

    Google Scholar 

  • Gardiner, D.K., Borne, B.J.: Textile wastewaters: treatment and environmental effects. Soc. Dyes Colourists J. 94, 339–348 (1978)

    CAS  Google Scholar 

  • Giles, C.H., Mac Ewan, T.H., Nakhawa, S.N., Smith, D.S.: Systems of classification of solution adsorption isotherms, Chem. Soc. J., 3973–3993 (1960)

  • Gupta, G.S., Shukla, S.P.: An inexpensive adsorption technique for the treatment of carpet effluents by low cost materials. Adsorpt. Sci. Technol. 13, 15–26 (1996)

    CAS  Google Scholar 

  • Harper, M., Purnell, C.: Alkylammonium montmorillonites as adsorbents for organic vapours from air. Environ. Sci. Technol. 24, 55–62 (1990)

    Article  CAS  Google Scholar 

  • Ho, Y.S., Kay, M.: Kinetic model for lead (II) sorption onto peat. Adsorpt. Sci. Technol. 16, 243 (1998)

    CAS  Google Scholar 

  • Horning, R.H.: Characterization and treatment of textile dyeing wastewaters. Tex. Chem. Colourists 9, 24–27 (1977)

    CAS  Google Scholar 

  • Jaynes, W.F., Boyd, S.A.: Clay mineral type and organic compound sorption by hexadecyltrimethylammonium exchanged clays. Soil Sci. Soc. Am. J. 55, 43–48 (1991)

    Article  CAS  Google Scholar 

  • Jordan, J.W.: Organophilic bentonites. I. Swelling in organic liquids. Phys. Chem. J. 53, 294–306 (1949)

    Article  CAS  Google Scholar 

  • Kacha, S., Ouali, S., Elmaleh, M.S.: Elimination des colorants des eaux résiduaires de l’industrie textile par la bentonite et les sels d’aluminium. Rev. Sci. Eau 10, 233–247 (1997)

    CAS  Google Scholar 

  • Kacha, S., Derriche, Z., Elmaleh, S.: Equilibrium and kinetics of colour removal from dye solutions with bentonite and polyaluminium hydroxide. Water Environ. Res. 75, 1 (2003)

    Article  Google Scholar 

  • Kahr, G., Madsen, F.T.: Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Appl. Clay Sci. 9, 327 (1995)

    Article  CAS  Google Scholar 

  • Khattri, S.D., Singh, M.K.: Colour removal from dye wastewater using sugar cane dust as an adsorbent. Adsorpt. Sci. Technol. 17, 269–278 (1999)

    CAS  Google Scholar 

  • Konduru, R., Ramakrishna, K.R., Viraraghavan, T.: Dye removal using low cost adsorbents. Water Sci. Technol. 36, 189–196 (1997)

    Google Scholar 

  • Koumanova, B., Peeva, P., Allen, S.J., Gallagher, K.A., Healy, M.G.: Bioadsorption from aqueous solutions by eggshell membranes and Rhizopus oryzae: equilibrium and kinetic studies. Chem. Technol. Biotechnol. J. 77, 539–545 (2002)

    Article  CAS  Google Scholar 

  • Krishna, D.G., Bhattacheryya, G.: Adsorption of methylene blue on kaolinite. Appl. Clay Sci. 20, 295–303 (2002)

    Article  Google Scholar 

  • Lagergreen, S.: About the theory of so-called adsorption of soluble substances. K Svenska Vetenskapsakad Handl. 24, 1–39 (1898)

    Google Scholar 

  • Liversidge, M., Lloyd, G.J., Wase, D.A.J., Forster, C.F.: Removal of basic blue 41 dye from aqueous solution by linseed cake. Process. Biochem. 32, 473–477 (1997)

    Article  CAS  Google Scholar 

  • Lizhong, Z., Xiaogang, R., Shaobin, Y.: Use of cetyltrimethylammonium bromide-bentonite to remove organic contaminants of varying polar character from water. Environ. Sci. Technol. 32, 3374–3378 (1998)

    Article  Google Scholar 

  • Mahlok, J.L., Shindala, A.M., Griff, E.C., Barnett, W.A.: Treating dye and finishing wastes. Am. Dye Stuff Report 64, 24–46 (1975)

    Google Scholar 

  • Mc Kay, G., Allen, S.J.: Application of kinetic models to the adsorption of copper (II) on to peat. Can. Chem. Eng. J. 58, 521–525 (1980)

    Article  CAS  Google Scholar 

  • Morais, L.C., Freitas, O.M., Goncalves, E.P., Vasconcelos, L.T., Gonzalez Beca, C.G.: Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process. Water Res. 33, 979–988 (1999)

    Article  CAS  Google Scholar 

  • Nagarethinam, K., Mariappan, M.S.: Kinetics and mechanism of removal of methylene blue by adsorption on various carbons: a comparative study. Dyes Pigment 51, 25–40 (2001)

    Article  Google Scholar 

  • Namasivayam, C., Yamuna, R.T.: Adsorption of direct red 12 B by biogas residual slurry: equilibrium and rate processes. Environ. Pollut. 89, 1–7 (1995)

    Article  CAS  Google Scholar 

  • Namasivayam, C., Prabha, D., Kumutha, M.: Removal of direct red and acid brilliant blue by adsorption. Biores. Technol. 64, 77–79 (1998)

    Article  CAS  Google Scholar 

  • Ozcan, D., Oncu, E.M., Ozcan, A.S.: Adsorption of acid blue 193 from aqueous solutions onto DEDMA-Sepeolite. Hazard. Mater. J. 129, 244–252 (2006)

    Article  CAS  Google Scholar 

  • Paudit, P., Basu, S.: Removal of organic dyes from water by liq-liq extraction using reverse micelles. J. Colloid Interface Sci. 245, 208 (2002)

    Article  CAS  Google Scholar 

  • Poots, V.J.P., Mc Kay, G., Healy, J.J.: The removal of acid dye from effluent using natural adsorbents—I. Peat. Water Res. 10, 1061–1066 (1976)

    Article  CAS  Google Scholar 

  • Raghavacharya, C.: Colour removal from industrial effluent—a comparative review of available technologies. Chem. Eng. World 32, 53–58 (1997)

    CAS  Google Scholar 

  • Shu, H.T., Li, D., Scala, A.A.: Adsorption of small organic pollutants from aqueous streams by aluminosilicate-based microporous materials. Sep. Purif. Technol. 11, 27–36 (1997)

    Article  CAS  Google Scholar 

  • Smith, J.A., Tuck, D.M., Jaffe, P.R., Mueller, R.T.: Effect of surfactants on the mobility of nonpolar organic contaminants in porous media in organic substances and sediments in water. In: Baker, R.A. (ed.) pp. 201–230. Lewis (1991)

  • Sun, G., Xu, X.: Sunflower stalks as adsorbent for colour removal from textile wastewater. Ind. Eng. Chem. Res. 36, 808–812 (1997)

    Article  CAS  Google Scholar 

  • Wu, F.C., Tseng, R.L., Juang, R.S.: Kinetics of colour removal by adsorption from water using activated clay. Environ. Technol. 22, 721 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Derriche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khenifi, A., Bouberka, Z., Sekrane, F. et al. Adsorption study of an industrial dye by an organic clay. Adsorption 13, 149–158 (2007). https://doi.org/10.1007/s10450-007-9016-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-007-9016-6

Keywords

Navigation