Skip to main content

Advertisement

Log in

Abundant microbes of surface sea waters of the uncharted Engaño Bay at the Atlantic Patagonian Coast: relevance of bacteria-sized photosynthetic eukaryotes

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Microorganisms play a central role in the structure and function of marine ecosystems. Its vast diversity makes the disentangling of the microbial taxonomic composition an essential task. Engaño Bay, a highly productive temperate region on the Patagonian Atlantic Coast, constitutes a remote uncharted area. Here, metabarcoding analyses revealed that the microbiome community (cells < 5 µm) of surface water is dominated by a few bacterial taxa along with diverse low frequency groups. A substantial number of sequences of photosynthetic picoeukaryotes (PPE) were also evidenced, yet no cyanobacterial sequences could be observed. Specific PCR-detection of cyanobacteria, monitoring of viruses specific for cyanobacteria and PPE, microbiological isolation, and molecular diet analyses confirmed these findings. Cyanobacteria were PCR detected in three out of thirteen samples, while virological monitoring indicated the presence of PPE viruses and the absence of cyanobacteria phages. Traditional culture methods allowed the isolation of Ostreococcus and Micromonas spp. from samples belonging to warm and cold seasons, respectively. Molecular diet analyses showed that PPE were grazed by nanoplankters and that grazing pressure on PPE was stronger than on bacteria. Phylogenetic characterization of viral sequences indicated the presence of Ostreococcus virus, four Micromonas virus lineages and a divergent clade of Phycodnavirus belonging to no known viral species, pointing out a complex scenario of its hosts. This work characterizes the marine microbiome from a temperate uncharted region at the Southern Hemisphere, demonstrating the prevalence of PPE as primary producers with a complex scenario which warrant further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

GenBank BioSamples SAMN04495742, SAMN04495743, SAMN04495744 and SAMN04495745. GenBank accession numbers for sequences generated in this work KX601722-KX601794, KX601972-KX602003, KC210884-KC21089, MH348879-MH348890, MN719512-MN719607, MN719608-MN719624, MN719625-MN719633, MW960118-MW960164, MW960180- MW960206, MW961599-MW961645, MW960206-MW969643 and MZ215817-MZ215846.

Code availability

Not applicable.

References

  • Agarwal V, Blanton JM, Podell S, Taton A, Schorn MA, Busch J, Lin Z, Schmidt EW, Jensen PR, Paul VJ, Biggs JS, Golden JW, Allen EE, Moore BS (2017) Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat Chem Biol 13(5):537–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso C, Pernthaler J (2006) Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ Microbiol 8(11):2022–2030

    Article  CAS  PubMed  Google Scholar 

  • Bachy C, Yung CCM, Needham DM, Gazitua MC, Roux S, Limardo AJ, Choi CJ, Jorgens DM, Sullivan MB, Worden AZ (2021) Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. ISME J 15(11):3129–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bec B, Husseini-Ratrema J, Collos Y, Souchu P, Vaquer A (2005) Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: emphasis on the picoeukaryote community. J Plankton Res 27(9):881–894

    Article  CAS  Google Scholar 

  • Biegala IC, Not F, Vaulot D, Simon N (2003) Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with tyramide signal amplification-fluorescence in situ hybridization and flow cytometry. Appl Environ Microbiol 69(9):5519–5529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolaños LM, Choi CJ, Worden AZ, Baetge N, Carlson CA, Giovannoni S (2021) Seasonality of the microbial community composition in the North Atlantic. Front Mar Sci 8:624164. https://doi.org/10.3389/fmars.2021.624164

    Article  Google Scholar 

  • Bratbak G, Thingstad F, Heldal M (1994) Viruses and the microbial loop. Microb Ecol 28(2):209–221

    Article  CAS  PubMed  Google Scholar 

  • Calvo AY, Manrique JM, Jones LR (2018) Rare unclassified 16S rRNA operational taxonomic units from the uncharted Engano Bay (Argentinean Patagonia). Can J Microbiol 64(1):91–96

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Mark Welch DB, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, van Oppen MJH, Weaver SC, Webb EA, Webster NS (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17(9):569–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Suttle CA (1995) Amplification of DNA polymerase gene fragments from viruses infecting microalgae. Appl Environ Microbiol 61(4):1274–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Wang K, Huang S, Cai H, Zhao M, Jiao N, Wommack KE (2009) Diverse and dynamic populations of cyanobacterial podoviruses in the Chesapeake Bay unveiled through DNA polymerase gene sequences. Environ Microbiol 11(11):2884–2892

    Article  PubMed  Google Scholar 

  • Choi CJ, Bachy C, Jaeger GS, Poirier C, Sudek L, Sarma VV, Mahadevan A, Giovannoni SJ, Worden AZ (2017) Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed. Curr Biol 27(1):R15–R16

    Article  CAS  PubMed  Google Scholar 

  • Clerissi C, Desdevises Y, Grimsley N (2012) Prasinoviruses of the marine green alga Ostreococcus tauri are mainly species specific. J Virol 86(8):4611–4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway JR, Lex A, Gehlenborg N (2017) UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33(18):2938–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang H, Li T, Chen M, Huang G (2008) Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol 74(1):52–60

    Article  CAS  PubMed  Google Scholar 

  • Dogliotti AI, Lutz VA, Segura V (2014) Estimation of primary production in the southern Argentine continental shelf and shelf-break regions using field and remote sensing data. Remote Sens Environ 140:497–508

    Article  Google Scholar 

  • Esteves NSJL (1993) Chemical and phytoplanktonic characteristics at the Chubut Estuary (Patagonia, Argentine). Naturalia Patagónica, Ciencias Biológicas 1(1):22–34

    Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B 3rd, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290(5490):291–296

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320(5879):1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240

    Article  CAS  PubMed  Google Scholar 

  • Gerardo MEP, Piccolo MC, Maria del Carmen S, Orfila J (1989) Hydrography and Circulation of the Chubut River Estuary (Argentina). Estuaries 12(3):186–194

    Article  Google Scholar 

  • Ghosh A, Bhadury P (2019) Exploring biogeographic patterns of bacterioplankton communities across global estuaries. Microbiologyopen 8(5):e00741

    Article  PubMed  Google Scholar 

  • Gibbons SM, Gilbert JA (2015) Microbial diversity–exploration of natural ecosystems and microbiomes. Curr Opin Genet Dev 35:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannoni SJ (2017) SAR11 Bacteria: The Most Abundant Plankton in the Oceans. Ann Rev Mar Sci 9:231–255

    Article  PubMed  Google Scholar 

  • Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, Beman JM, Abell G, Philippot L, Prosser J, Foulquier A, Yuste JC, Glanville HC, Jones DL, Angel R, Salminen J, Newton RJ, Burgmann H, Ingram LJ, Hamer U, Siljanen HM, Peltoniemi K, Potthast K, Baneras L, Hartmann M, Banerjee S, Yu RQ, Nogaro G, Richter A, Koranda M, Castle SC, Goberna M, Song B, Chatterjee A, Nunes OC, Lopes AR, Cao Y, Kaisermann A, Hallin S, Strickland MS, Garcia-Pausas J, Barba J, Kang H, Isobe K, Papaspyrou S, Pastorelli R, Lagomarsino A, Lindstrom ES, Basiliko N, Nemergut DR (2016) Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321

    Article  CAS  PubMed  Google Scholar 

  • Hall T, Biosciences I, Carlsbad CJGBB (2011) BioEdit: an important software for molecular biology. GERF Bull Biosci 2(1):60–61

    Google Scholar 

  • Hoarfrost A, Nayfach S, Ladau J, Yooseph S, Arnosti C, Dupont CL, Pollard KS (2020) Global ecotypes in the ubiquitous marine clade SAR86. ISME J 14(1):178–188

    Article  CAS  PubMed  Google Scholar 

  • Hoogendoorn M, Heimpel GE (2001) PCR-based gut content analysis of insect predators: using ribosomal ITS-1 fragments from prey to estimate predation frequency. Mol Ecol 10(8):2059–2067

    Article  CAS  PubMed  Google Scholar 

  • Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo T, Chen F, Azam F (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8(8):593–599

    Article  CAS  PubMed  Google Scholar 

  • Johannessen TV, Larsen A, Bratbak G, Pagarete A, Edvardsen B, Egge ED, Sandaa RA (2017) Seasonal dynamics of haptophytes and dsDNA algal viruses suggest complex virus-host relationship. Viruses 9(4):84

    Article  PubMed Central  Google Scholar 

  • Johnson PW, Sieburth JM (1982) In-situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J Phycol 18(3):318–327

    Article  Google Scholar 

  • Katoh K, Standley DM (2014) MAFFT: iterative refinement and additional methods. Methods Mol Biol 1079:131–146

    Article  PubMed  Google Scholar 

  • Keller MD, Selvin RC, Claus W, Guillard RR (1987) Media for the culture of oceanic ultraphytoplankton. J Phycol 23(4):633–638

    Article  Google Scholar 

  • Kuoza H (1991) Picoplanktonic algae in the northern Baltic Sea: seasonal dynamics and flagellate grazing. Mar Ecol Prog Ser 73:269–276

    Article  Google Scholar 

  • Labonte JM, Reid KE, Suttle CA (2009) Phylogenetic analysis indicates evolutionary diversity and environmental segregation of marine podovirus DNA polymerase gene sequences. Appl Environ Microbiol 75(11):3634–3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014) UpSet: Visualization of Intersecting Sets. IEEE Trans vis Comput Graph 20(12):1983–1992

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Fu B, Yang H, Zhao M, He B, Zhang XH (2015) Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients. Front Microbiol 6:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, DeSantis TZ, Andersen GL, Knight R (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36(18):e120

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35(18):e120

    Article  PubMed  PubMed Central  Google Scholar 

  • Logares R, Audic S, Santini S, Pernice MC, de Vargas C, Massana R (2012) Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME J 6(10):1823–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Perez M, Haro-Moreno JM, Iranzo J, Rodriguez-Valera F (2020) Genomes of the “Candidatus Actinomarinales” order: highly streamlined marine epipelagic actinobacteria. mSystems 5(6):e01041-e1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manrique JM, Calvo AY, Jones LR (2012) Phylogenetic analysis of Ostreococcus virus sequences from the Patagonian Coast. Virus Genes 45(2):316–326

    Article  CAS  PubMed  Google Scholar 

  • Manrique JM, Jones LR (2014) Genetic data generated from virus-host complexes obtained by membrane co-immobilization are equivalent to data obtained from tangential filtrate virus concentrates and virus cultures. Virus Genes 48(1):160–167

    Article  CAS  PubMed  Google Scholar 

  • Manrique JM, Jones LR (2017) Are ocean currents too slow to counteract SAR11 evolution? A next-generation sequencing, phylogeographic analysis. Mol Phylogenet Evol 107:324–337

    Article  CAS  PubMed  Google Scholar 

  • Middelboe M, Brussaard CPD (2017) Marine viruses: key players in marine ecosystems. Viruses 9(10):302

    Article  PubMed Central  Google Scholar 

  • Mo Y, Zhang W, Yang J, Lin Y, Yu Z, Lin S (2018) Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J 12(9):2198–2210

    Article  PubMed  PubMed Central  Google Scholar 

  • Mojica KD, Brussaard CP (2014) Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol Ecol 89(3):495–515

    Article  CAS  PubMed  Google Scholar 

  • Motwani NH, Gorokhova E (2013) Mesozooplankton grazing on picocyanobacteria in the Baltic Sea as inferred from molecular diet analysis. PLoS ONE 8(11):e79230

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyano CH, Moyano MC (2013) Estudio hidrológico del Río Chubut. Cuenca superior y media. Contribuciones Científicas GAEA 25:149–164

    Google Scholar 

  • Not F, del Campo J, Balague V, de Vargas C, Massana R (2009) New insights into the diversity of marine picoeukaryotes. PLoS ONE 4(9):e7143

    Article  PubMed  PubMed Central  Google Scholar 

  • Nubel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63(8):3327–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nylander JA (2004) MrAIC.pl, Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

  • Pedros-Alio C (2012) The rare bacterial biosphere. Ann Rev Mar Sci 4:449–466

    Article  PubMed  Google Scholar 

  • Piccolo MC, Perillo GME (1999) Estuaries of South America: Their Geomorphology and Dynamics. Perillo, G.M.E., Piccolo, M.C. and Pino-Quivira, M. (eds), pp. 101–132, Springer-Verlag, Berlin.

  • Pomeroy LR, leB Williams PJ, Azam F, Hobbie JE (2007) The microbial loop. Oceanography 20(2):28–33

    Article  Google Scholar 

  • R-Core-Team (2016) R: A language and environment for statistical computing., R Foundation for Statistical Computing, Vienna, Austria.

  • Reckermann M, Veldhuis MJW (1997) Trophic interactions between picophytoplankton and micro- and nanozooplankton in the western Arabian Sea during the NE monsoon 1993. Aquat Microb Ecol 12:263–273

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular Cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Santinelli NH, Sastre AV, Gil MN, Esteves JL (2018) Composition and structure of phytoplankton communities in coastal environments with anthropogenic disturbance (Patagonia, Argentina). In: Hoffmeyer M, Sabatini M, Brandini F, Calliari D, Santinelli N (eds) Plankton ecology of the Southwestern Atlantic. Springer, Cham. https://doi.org/10.1007/978-3-319-77869-3_23

    Chapter  Google Scholar 

  • Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73(2):249–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6(12):e27310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Girard RA, Martin T, Edwards J, Thrash JC (2016) Status of the archaeal and bacterial census: an update. Mbio 7(3):e00201-e216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze-Schweifing K, Banerjee A, Wade WG (2014) Comparison of bacterial culture and 16S rRNA community profiling by clonal analysis and pyrosequencing for the characterization of the dentine caries-associated microbiome. Front Cell Infect Microbiol 4:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, Gilbert JA (2014) Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. Mbio 5(4):e01371-e11314

    Article  PubMed  PubMed Central  Google Scholar 

  • Suttle CA (2007) Marine viruses–major players in the global ecosystem. Nat Rev Microbiol 5(10):801–812

    Article  CAS  PubMed  Google Scholar 

  • Tragin M, Vaulot D (2018) Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Sci Rep 8(1):14020

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weynberg KD, Allen MJ, Wilson WH (2017) Marine prasinoviruses and their tiny plankton hosts: a review. Viruses 9(3):43

    Article  PubMed Central  Google Scholar 

  • Worden AZ, Nolan JK, Palenik B (2004) Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceanogr 49(1):168–179

    Article  CAS  Google Scholar 

  • Wu W, Huang B, Zhong C (2014) Photosynthetic picoeukaryote assemblages in the South China Sea from the Pearl River estuary to the SEATS station. Aquat Microb Ecol 71:271–284

    Article  Google Scholar 

  • Zeng YX, Zhang F, He JF, Lee SH, Qiao ZY, Yu Y, Li HR (2013) Bacterioplankton community structure in the Arctic waters as revealed by pyrosequencing of 16S rRNA genes. Antonie Van Leeuwenhoek 103(6):1309–1319

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

MAB and LIG are doctoral fellows at the National Council for Scientific and Technical Research. JMM and LRJ are members of the CONICET scientific career. We thank Prof. Isabel Albarracín for kindly providing the reference material of cyanobacteria used in this work.

We would like to thank both anonymous reviewers and the editor for the suggestions made in order to improve the final manuscript.

Funding

This study has been financed by the projects PICT2016-2795 and PICT-2020-SERIEA-03643 from the National Agency for Scientific and Technological Promotion to JMM and LRJ, PI 1657- 80020200100022UP from The National University of Patagonia San Juan Bosco to JM, PIP11220200102657 from CONICET to L.R.J. and the Argentine Civil Association Genetics (ArGen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julieta M. Manrique.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 298 kb)

Supplementary file2 (XLS 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giaccardi, L.I., Badenas, M.A., Jones, L.R. et al. Abundant microbes of surface sea waters of the uncharted Engaño Bay at the Atlantic Patagonian Coast: relevance of bacteria-sized photosynthetic eukaryotes. Aquat Ecol 56, 1217–1230 (2022). https://doi.org/10.1007/s10452-022-09962-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-022-09962-w

Keywords

Navigation