Skip to main content
Log in

Local polynomial expectile regression

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

This paper studies local polynomial estimation of expectile regression. Expectiles and quantiles both provide a full characterization of a (conditional) distribution function, but have each their own merits and inconveniences. Local polynomial fitting as a smoothing technique has a major advantage of being simple, allowing for explicit expressions and henceforth advantages when doing inference theory. The aim of this paper is twofold: to study in detail the use of local polynomial fitting in the context of expectile regression and to contribute to the important issue of bandwidth selection, from theoretical and practical points of view. We discuss local polynomial expectile regression estimators and establish an asymptotic normality result for them. The finite-sample performance of the estimators, combined with various bandwidth selectors, is investigated in a simulation study. Some illustrations with real data examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bellini, F., D Bernardino, E. (2017). Risk management with expectiles. The European Journal of Finance, 23(6), 487–506.

    Article  Google Scholar 

  • Bellini, F., Klar, B., Müller, A., Rosazza Gianin, E. (2014). Generalized quantiles as risk measures. Insurance: Mathematics and Economics, 54, 41–48.

    MathSciNet  MATH  Google Scholar 

  • Breckling, J., Chambers, R. (1988). M-quantiles. Biometrika, 75(4), 761–771.

    Article  MathSciNet  Google Scholar 

  • Chen, J., Shao, J. (1993). Iterative weighted least squares estimators. The Annals of Statistics, 21(2), 1071–1092.

    Article  MathSciNet  Google Scholar 

  • De Rossi, G., Harvey, A. (2009). Quantiles, expectiles and splines. Journal of Econometrics, 152, 179–185.

    Article  MathSciNet  Google Scholar 

  • Efron, B. (1991). Regression percentiles using asymmetric squared error loss. Statistica Sinica, 1, 93–125.

    MathSciNet  MATH  Google Scholar 

  • Fan, J., Gijbels, I. (1995). Adaptive order polynomial fitting: bandwidth robustification and bias reduction. Journal of Computational and Graphical Statistics, 4(3), 213–227.

    Google Scholar 

  • Fan, J., Gijbels, I. (1996). Local polynomial modelling and its applications. Number 66 in monographs on statistics and applied probability series. London: Chapman & Hall.

    Google Scholar 

  • Fan, J., Hu, T., Truong, Y. (1994). Robust non-parametric function estimation. Scandinavian Journal of Statistics, 21(4), 433–446.

    MathSciNet  MATH  Google Scholar 

  • Fredriks, A., van Buuren, S., Burgmeijer, R., Meulmeester, J., Beuker, R., Brugman, E., et al. (2000). Continuing positive secular growth change in the Netherlands 1955–1997. Pediatric Research, 47(3), 316–323.

    Article  Google Scholar 

  • Gijbels, I., Karim, R., Verhasselt, A. (2019). On quantile-based asymmetric family of distributions: Properties and inference. International Statistical Review, 87(3), 471–504.

    Article  MathSciNet  Google Scholar 

  • Härdle, W. (1990). Applied nonparametric regression. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Huber, P., Ronchetti, E. (2009). Robust statistics (2nd ed.). New Jersey: Wiley.

    Book  Google Scholar 

  • Jones, M. (1994). Expectiles and M-quantiles are quantiles. Statistics and Probability Letters, 20(2), 149–153.

    Article  MathSciNet  Google Scholar 

  • Koenker, R. (2005). Quantile regression (Vol. 38). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Koenker, R., Bassett, G. (1978). Regression quantiles. Econometrica, 46(1), 33–50.

    Article  MathSciNet  Google Scholar 

  • Krätschmer, V., Zähle, H. (2017). Statistical inference for expectile-based risk measures. Scandinavian Journal of Statistics, 44(2), 425–454.

    MathSciNet  MATH  Google Scholar 

  • Newey, W., Powell, J. (1987). Asymmetric least squares estimation and testing. Econometrica, 55(4), 819–847.

    Article  MathSciNet  Google Scholar 

  • Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econometric Theory, 7(2), 186–199.

    Article  MathSciNet  Google Scholar 

  • Remillard, B., Abdous, B. (1995). Relating quantiles and expectiles under weighted-symmetry. Annals of the Institute of Statistical Mathematics, 47, 371–384.

    Article  MathSciNet  Google Scholar 

  • Schnabel, S., Eilers, P. (2009). Optimal expectile smoothing. Computational Statistics & Data Analysis, 53(12), 4168–4177.

    Article  MathSciNet  Google Scholar 

  • Schulze Waltrup, L., Sobotka, F., Kneib, T., Kauermann, G. (2015). Expectile and quantile regression-David and Goliath? Statistical Modelling, 15(5), 433–456.

    Article  MathSciNet  Google Scholar 

  • Taylor, J. (2008). Estimating value at risk and expected shortfall using expectiles. Journal of Financial Econometrics, 6(2), 231–252.

    Article  Google Scholar 

  • Wand, M., Jones, M. (1995). Kernel smoothing. London: Chapman and Hall.

    Book  Google Scholar 

  • Wolke, R., Schwetlick, H. (1988). Iteratively reweighted least squares: Algorithms, convergence analysis, and numerical comparisons. SIAM Journal on Scientific and Statistical Computing, 9(5), 907–921.

    Article  MathSciNet  Google Scholar 

  • Yang, Y., Zou, H. (2015). Nonparametric multiple expectile regression via er-boost. Journal of Statistical Computation and Simulation, 85(7), 1442–1458.

    Article  MathSciNet  Google Scholar 

  • Yao, Q., Tong, H. (1996). Asymmetric least squares regression estimation: A nonparametric approach. Journal of Nonparametric Statistics, 6(2), 273–292.

    Article  MathSciNet  Google Scholar 

  • Yu, K., Jones, M. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93(441), 228–237.

    Article  MathSciNet  Google Scholar 

  • Zhang, L., Mei, C. (2008). Testing heteroscedasticity in nonparametric regression models based on residual analysis. Applied Mathematics, 23, 265–272.

    Article  MathSciNet  Google Scholar 

  • Ziegel, J. (2016). Coherence and elicitability. Mathematical Finance, 26(4), 901–918.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to an Associate Editor and two reviewers for the very valuable comments which led to an improvement of the paper. The authors gratefully acknowledge support of Research Grant FWO G0D6619N from the Flemish Science Foundation and of GOA/12/014 and C16/20/002 projects from the Research Fund KU Leuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gijbels.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 926 KB)

Appendix

Appendix

1.1 A.1 Proof of Theorem 1

The proof of this theorem is similar in setup as the one provided by Fan et al. (1994) to study nonparametric regression based on i.i.d. observations. The main idea of the proof is to approximate the quantity to be minimized in (11) by a quadratic function whose minimizer is asymptotically normal, and then to show that \((\widehat{\tau }_\omega (x),\widehat{\tau }_\omega ^{(1)} (x), \cdots , \widehat{\tau }_\omega ^{(p)} (x) )^{\text{ T }}\) lies close enough to that minimizer to share the latter’s asymptotic behaviour. The convexity lemma (Pollard 1991) plays a role in the above approximation. We give the details of the proof below.

Recall that, for x a given point, \(\beta _0=\tau _\omega (x), \beta _1=\tau _\omega ^{(1)}(x),\cdots , \beta _p=\frac{\tau _\omega ^{(p)}(x)}{p!}\) and \(\widehat{\beta }_0=\widehat{\tau }_\omega (x),\widehat{\beta }_1=\widehat{\tau }_\omega ^{(1)}(x),\cdots ,\widehat{\beta }_p=\frac{\widehat{\tau }_\omega ^{(p)}(x)}{p!}\) with \((\widehat{\beta }_0,\cdots ,\widehat{\beta }_p)\) minimizing

$$\begin{aligned} \sum _{i=1}^n Q_\omega \left( Y_i-\sum _{j=0}^p\beta _j(X_i-x)^j\right) K\left( \frac{X_i-x}{h}\right) . \end{aligned}$$

Let

$$\begin{aligned} \begin{array}{l} K_i=K\left( \frac{X_i-x}{h}\right) \\ \mathbf {Z}_i=\left( 1,\frac{X_i-x}{h},\left( \frac{X_i-x}{h}\right) ^2,\ldots ,\left( \frac{X_i-x}{h}\right) ^p\right) ^{\text{ T }} \\ Y_i^*=Y_i-\tau _\omega (x)-\tau _\omega ^{(1)}(x)(X_i-x)-\cdots -\frac{\tau _\omega ^{(p)}(x)}{p!}(X_i-x)^p \\ \widehat{\varvec{\theta }}=\sqrt{nh}\left( \widehat{\beta }_0-\tau _\omega (x),\cdots ,h^p\left( \widehat{\beta }_p-\frac{\tau ^{(p)}_\omega (x)}{p!}\right) \right) ^{\text{ T }} . \end{array} \end{aligned}$$

For \((\theta _0,\ldots ,\theta _p)^{\text{ T }} =\varvec{\theta }\in \mathbb {R}^{p+1}\), \(\widehat{\varvec{\theta }}\) minimizes the function

$$\begin{aligned} G_n(\varvec{\theta })&=\sum _{i=1}^n\left[ Q_\omega \left( Y^*_i-\varvec{\theta }^{\text{ T }} \frac{\varvec{Z}_i}{\sqrt{nh}}\right) -Q_\omega (Y_i^*)\right] K_i. \end{aligned}$$

Note that the function \(G_n(\varvec{\theta })\) is convex in \(\varvec{\theta }\) (the second derivative is \(\ge 0\) for all \(\varvec{\theta }\)). It is sufficient to prove that this function converges pointwise to its conditional expectation, since it follows from the convexity lemma of Pollard (1991) that the convergence is also uniform on any compact set of \(\varvec{\theta }\).

We next approximate \(G_n(\cdot )\) by a quadratic function whose minimizing value has an asymptotic normal distribution. Two terms contribute to the approximation. One is a quadratic function obtained via a Taylor expansion of the expected value, and the other term is random and linear in \(\varvec{\theta }\). Write

$$\begin{aligned} G_n(\varvec{\theta })=\mathrm {E}_{Y|X}[G_n(\varvec{\theta })|\mathcal {X}] -\frac{2}{\sqrt{nh}}\left( \sum _{i=1}^nL_\omega (Y_i^*)\varvec{Z}_iK_i-\mathrm {E}_{Y|X} \left[ L_\omega (Y_i^*)|X_i\right] \varvec{Z}_iK_i\right) ^{\text{ T }} \varvec{\theta } + R_n(\varvec{\theta }) \end{aligned}$$
(A.1)

with

$$\begin{aligned} R_n(\varvec{\theta })=G_n(\varvec{\theta })-\mathrm {E}_{Y|X}[G_n(\varvec{\theta })|\mathcal {X}]+\frac{2}{\sqrt{nh}}\left( \sum _{i=1}^n L_\omega (Y^*_i)\varvec{Z}_iK_i-\mathrm {E}_{Y|X}[L_\omega (Y_i^*)|X_i]\varvec{Z}_iK_i \right) ^{\text{ T }} \varvec{\theta }. \end{aligned}$$
(A.2)

Let M be a real number such that the interval \([-M,M]\) contains the support of K. By Taylor expansion,

$$\begin{aligned} \tau _\omega (X_i)=\tau _\omega (x)+\tau _\omega ^{(1)}(x)(X_i-x)+\cdots +\frac{\tau _\omega ^{(p+1)}(x)}{(p+1)!}(X_i-x)^{p+1}+\xi _{n,i} \quad \text {for}\quad |X_i-x|\le Mh \end{aligned}$$

with \(\xi _{n,i}=o_P\left( |X_i-x|^{p+1}\right) =o_P(h^{p+1})\) holds uniformly as \(X_i\rightarrow x\), i.e. \( \max _{\{i:|X_i-x|\le Mh\}}||\xi _{n,i}||_{\infty }=o_P(h^{p+1})\) since \(\tau _{\omega }(.)\) has a continuous \((p+2)\)th derivative.

We have

$$\begin{aligned}&\mathrm {E}_{Y|X}[G_n(\varvec{\theta })|\mathcal {X}]\\&\quad =\mathrm {E}_{Y|X}\left. \left[ \sum _{i=1}^n\left[ Q_\omega \left( Y^*_i-\varvec{\theta }^{\text{ T }} \frac{\varvec{Z}_i}{\sqrt{nh}}\right) -Q_\omega (Y_i^*)\right] K_i\right| \mathcal {X}\right] \\&\quad =\sum _{i=1}^n\left. \left[ \mathrm {E}_{Y|X}\left[ Q_\omega \left( Y^*_i-\varvec{\theta }^{\text{ T }} \frac{\varvec{Z}_i}{\sqrt{nh}}\right) \right| X_i\right] -\mathrm {E}_{Y|X}\left[ Q_\omega (Y_i^*)|X_i\right] \right] K_i\\&\quad =\sum _{i=1}^n\left. \left( \mathrm {E}_{Y|X}\left[ Q_\omega \left( Y_i-\tau _\omega (x)-\tau _\omega ^{(1)}(x)(X_i-x)-\cdots -\frac{\tau _\omega ^{(p)}(x)}{p!}(X_i-x)^p-\varvec{\theta }^{\text{ T }} \frac{\varvec{Z}_i}{\sqrt{nh}}\right) \right| X_i\right] \right. \\&\quad \left. -\mathrm {E}_{Y|X}\left[ Q_\omega \left. \left( Y_i-\tau _\omega (x)-\tau _\omega ^{(1)}(x)(X_i-x)-\cdots -\frac{\tau _\omega ^{(p)}(x)}{p!}(X_i-x)^p\right) \right| X_i\right] \right) K_i\\&\quad =\sum _{i=1}^n\left. \left[ \varphi \left( \tau _\omega (X_i)-\tau _\omega (x)-\tau _\omega ^{(1)}(x)(X_i-x)-\cdots -\frac{\tau _\omega ^{(p)}(x)}{p!}(X_i-x)^p -\varvec{\theta }^{\text{ T }} \frac{\varvec{Z}_i}{\sqrt{nh}}\right| X_i\right) \right. \\&\quad \left. -\varphi \left. \left( \tau _\omega (X_i)-\tau _\omega (x)-\tau _\omega ^{(1)}(x)(X_i-x)-\cdots -\frac{\tau _\omega ^{(p)}(x)}{p!}(X_i-x)^p\right| X_i\right) \right] K_i\\&\quad =-\sum _{i=1}^n\varphi ^{(1)} \left. \left( \tau _\omega (X_i)-\tau _\omega (x)-\tau _\omega ^{(1)}(x)(X_i-x)-\cdots -\frac{\tau _\omega ^{(p)}(x)}{p!}(X_i-x)^p \right| X_i\right) \frac{\varvec{\theta }^{\text{ T }} \varvec{Z}_i}{\sqrt{nh}} K_i\\&\quad +\frac{1}{2}\sum _{i=1}^n \varphi ^{(2)} \left. \left( \tau _\omega (X_i)-\tau _\omega (x)-\tau _\omega ^{(1)}(x)(X_i-x)-\cdots -\frac{\tau _\omega ^{(p)}(x)}{p!}(X_i-x)^p\right| X_i\right) \\&\quad \frac{(\varvec{\theta }^{\text{ T }} \varvec{Z}_i)^2}{nh}K_i(1+o_P(1)). \end{aligned}$$

Moreover,

$$\begin{aligned}&\varphi ^{(2)} \left. \left( \tau _\omega (X_i)-\tau _\omega (x)-\tau _\omega ^{(1)}(x)(X_i-x)-\cdots -\frac{\tau _\omega ^{(p)}(x)}{p!}(X_i-x)^p\right| X_i\right) \\&\quad = \varphi ^{(2)} \left. \left( \tau _\omega (x)+\tau _\omega ^{(1)}(x)(X_i-x)+\cdots +\frac{\tau _\omega ^{(p+1)}(x)}{(p+1)!}(X_i-x)^{p+1}+\xi _{n,i} \right. \right. \\&\quad \left. \left. - \tau _\omega (x)-\tau _\omega ^{(1)}(x)(X_i-x)-\cdots -\frac{\tau _\omega ^{(p)}(x)}{p!}(X_i-x)^p)\right| X_i\right) \\&\quad =\varphi ^{(2)} \left. \left( \frac{\tau _\omega ^{(p+1)}(x)}{(p+1)!}(X_i-x)^{p+1}+\xi _{n,i}\right| X_i\right) \\&\quad =\varphi ^{(2)} \left. \left( 0\right| X_i\right) +O_P(h^{p+1}). \end{aligned}$$

It follows that

$$\begin{aligned} \mathrm {E}_{Y|X}[G_n(\varvec{\theta })|\mathcal {X}]= & {} \frac{-2}{\sqrt{nh}}\sum _{i=1}^n\mathrm {E}_{Y|X}\left[ L_\omega \left( Y_i^*|X_i\right) \right] (\varvec{\theta }^{\text{ T }} \varvec{Z}_i)K_i \\&+\frac{1}{2nh}\varvec{\theta }^{\text{ T }} \left( \sum _{i=1}^n K_i \gamma (\omega ,X_i)\varvec{Z}_i\varvec{Z}_i^{\text{ T }} \right) \varvec{\theta }(1+o_P(1)). \end{aligned}$$

Thus, we have

$$\begin{aligned} \frac{1}{nh}\sum _{i=1}^n K_i\gamma (\omega ,X_i)\varvec{Z}_i\varvec{Z}_i^{\text{ T }} = \frac{1}{nh}\sum _{i=1}^n K_i\gamma (\omega ,X_i) \, \begin{pmatrix} 1 &{}\frac{X_i-x}{h}&{}\left( \frac{X_i-x}{h}\right) ^2&{}\cdots &{}\left( \frac{X_i-x}{h}\right) ^p\\ \frac{X_i-x}{h} &{}\left( \frac{X_i-x}{h}\right) ^2&{}\left( \frac{X_i-x}{h}\right) ^3&{}\cdots &{}\left( \frac{X_i-x}{h}\right) ^{p+1}\\ \vdots &{}\vdots &{}\vdots &{}\ddots &{}\vdots \\ \left( \frac{X_i-x}{h}\right) ^{p}&{} \left( \frac{X_i-x}{h}\right) ^{p+1} &{} \left( \frac{X_i-x}{h}\right) ^{p+2} &{} \cdots &{} \left( \frac{X_i-x}{h}\right) ^{2p} \end{pmatrix}. \end{aligned}$$

Denoting \( \widetilde{S}_{n,j}=\frac{1}{nh}\sum _{i=1}^n\gamma (\omega ,X_i)\left( \frac{X_i-x}{h}\right) ^jK\left( \frac{X_i-x}{h}\right) \), for \(j=0,1,\ldots ,2p\), it follows from the fact that K has bounded support (see e.g. Fan and Gijbels 1996) that

$$\begin{aligned}&\widetilde{S}_{n,j}= \mathrm {E}_X[\widetilde{S}_{n,j}]+ O_P\left( \sqrt{\text {Var}_X(\widetilde{S}_{n,j})}\right) \\&\quad \mathrm {E}_X[\widetilde{S}_{n,j}]=\frac{n}{nh}\int \gamma (\omega ,v)f_X(v)\left( \frac{v-x}{h}\right) ^j K\left( \frac{v-x}{h}\right) {\mathrm{d}}v =\int \gamma (\omega ,x+uh)f_X(x+uh)u^jK\left( u\right) {\mathrm{d}}u\\&\quad =f_X(x)\gamma (\omega ,x)\mu _j + o(1), \end{aligned}$$

where the last equality comes from the dominated convergence theorem where we assumed that \(h\rightarrow 0\) and \(f_X(.)\) is continuous in a neighbourhood of x.

A similar argument leads to

$$\begin{aligned}&\text {Var}_X[\widetilde{S}_{n,j}]= \mathrm {E}_X[\widetilde{S}_{n,j}^2]-\mathrm {E}_X[\widetilde{S}_{n,j}]^2 \le \frac{n}{n^2h^2}\int \left( \gamma (\omega ,v)\left( \frac{v-x}{h}\right) ^jK\left( \frac{v-x}{h}\right) \right) ^2f_X(v){\mathrm{d}}v \\&\quad =\frac{1}{nh}\int \left( \gamma (\omega ,x+uh)u^jK\left( u\right) \right) ^2f_X(x+uh){\mathrm{d}}u =o(1). \end{aligned}$$

With this result and the definition of the matrix \(\mathbf {S}\), we have

$$\begin{aligned} \frac{1}{nh}\sum _{i=1}^n K_i\gamma (\omega ,X_i)\varvec{Z}_i\varvec{Z}_i^{\text{ T }}&=\gamma (\omega ,x)f_X(x)\mathbf {S}+o_P(1). \end{aligned}$$

We then obtain that

$$\begin{aligned} \mathrm {E}_{Y|X}[G_n(\varvec{\theta })|\mathcal {X}]= & {} \frac{-2}{\sqrt{nh}}\sum _{i=1}^n\mathrm {E}_{Y|X}\left[ L_\omega \left( Y_i^*|X_i\right) \right] (\varvec{\theta }^{\text{ T }} \varvec{Z}_i)K_i \\&+\frac{1}{2nh}\varvec{\theta }^{\text{ T }} \left( \sum _{i=1}^n K_i \gamma (\omega ,X_i)\varvec{Z}_i\varvec{Z}_i^{\text{ T }} \right) \varvec{\theta }(1+o_P(1))\\= & {} \frac{-2}{\sqrt{nh}}\sum _{i=1}^n\mathrm {E}_{Y|X}\left[ L_\omega \left( Y_i^*|X_i\right) \right] (\varvec{\theta }^{\text{ T }} \varvec{Z}_i)K_i +\frac{1}{2}\varvec{\theta }^{\text{ T }} \gamma (\omega ,x)f_X(x)\mathbf {S}\varvec{\theta }(1+o_P(1)). \end{aligned}$$

Next we show that \(R_n(\varvec{\theta })=o_P(1)\) (for the definition of \(R_n(\varvec{\theta })\) see (A.2)). We start by rewriting and approximating this quantity as follows:

$$\begin{aligned}&R_n(\varvec{\theta })\nonumber \\&=G_n(\varvec{\theta })-\mathrm {E}_{Y|X}[G_n(\varvec{\theta })|\mathcal {X}]+\frac{2}{\sqrt{nh}}\left( \sum _{i=1}^n L_\omega (Y^*_i)\varvec{Z}_iK_i-\mathrm {E}_{Y|X}[L_\omega (Y_i^*)|X_i]\varvec{Z}_iK_i \right) ^{\text{ T }} \varvec{\theta }\nonumber \\&=\sum _{i=1}^n\left[ Q_\omega \left( Y^*_i-\varvec{\theta }^{\text{ T }} \frac{\varvec{Z}_i}{\sqrt{nh}}\right) -Q_\omega (Y_i^*)\right] K_i\nonumber \\&\quad +\frac{2}{\sqrt{nh}}\sum _{i=1}^n\mathrm {E}_{Y|X}\left[ L_\omega \left( Y_i^*|X_i\right) \right] (\varvec{\theta }^{\text{ T }} \varvec{Z}_i)K_i -\frac{1}{2}\varvec{\theta }^{\text{ T }} \gamma (\omega ,x)f_X(x)\mathbf {S}\varvec{\theta }(1+o_P(1))\nonumber \\&\quad +\frac{2}{\sqrt{nh}}\left( \sum _{i=1}^n L_\omega (Y^*_i)\varvec{Z}_iK_i-\mathrm {E}_{Y|X}[L_\omega (Y_i^*)|X_i]\varvec{Z}_iK_i \right) ^{\text{ T }} \varvec{\theta }\nonumber \\&=\sum _{i=1}^n\left[ Q_\omega \left( Y^*_i-\varvec{\theta }^{\text{ T }} \frac{\varvec{Z}_i}{\sqrt{nh}}\right) -Q_\omega (Y_i^*)\right] K_i-\frac{1}{2}\varvec{\theta }^{\text{ T }} \gamma (\omega ,x)f_X(x)\mathbf {S}\theta (1+o_P(1))\nonumber \\&\quad +\frac{2}{\sqrt{nh}}\left( \sum _{i=1}^n L_\omega (Y^*_i)\varvec{Z}_iK_i\right) ^{\text{ T }} \varvec{\theta }\nonumber \\&=\sum _{i=1}^n\left[ Q_\omega \left( Y^*_i-\varvec{\theta }^{\text{ T }} \frac{\varvec{Z}_i}{\sqrt{nh}}\right) -Q_\omega (Y_i^*)+\frac{2}{\sqrt{nh}} L_\omega (Y^*_i)\varvec{\theta }^{\text{ T }} \varvec{Z}_i\right] K_i-\frac{1}{2}\varvec{\theta }^{\text{ T }} \gamma (\omega ,x)f_X(x)\mathbf {S}\theta (1+o_P(1)). \end{aligned}$$

By using Assumption (A3), we obtain

$$\begin{aligned}&\text {Var}_{X,Y}[R_n(\varvec{\theta })]\le n \mathrm {E}_{Y,X}\left[ \left( Q_\omega \left( Y^*_1-\varvec{\theta }^{\text{ T }} \frac{\varvec{Z}_1}{\sqrt{nh}}\right) -Q_\omega (Y_1^*) +\frac{2}{\sqrt{nh}}\left( L_\omega (Y^*_1)\varvec{Z}_1 \right) ^{\text{ T }} \varvec{\theta }\right) ^2\right] K_1^2\\&\quad \le n \int \int \left( Q_\omega \left( y_v^*-\varvec{\theta }^{\text{ T }} \frac{\varvec{z}}{\sqrt{nh}}\right) -Q_\omega (y^*_v) +\frac{2}{\sqrt{nh}}\left( L_\omega (y_v^*)\varvec{z} \right) ^{\text{ T }} \varvec{\theta }\right) ^2\\&\quad H(y|v) {\mathrm{d}}y K^2\left( \frac{v-x}{h}\right) f_X(v){\mathrm{d}}v\\&\quad = o\left( n\int \left( \varvec{\theta }^{\text{ T }} \frac{\varvec{z}}{\sqrt{nh}}\right) ^2 K^2\left( \frac{v-x}{h}\right) f_X(v){\mathrm{d}}v\right) =o(1) \end{aligned}$$

with \(\mathbf {z}=\left( 1,\frac{v-x}{h},\left( \frac{v-x}{h}\right) ^2,\cdots ,\left( \frac{v-x}{h}\right) ^p\right) ^{\text{ T }} \) and \(y_v^*=y-\tau _\omega (x)-\tau _\omega ^{(1)}(x)(v-x)-\cdots -\frac{\tau _\omega ^{(p)}(x)}{p!}(v-x)^p\).

It follows from the definition of \(R_n(\varvec{\theta })\) (in (A.2)) that for any \(\varvec{\theta }\in \mathbf {R}^{p+1}\), \(\omega \in (0,1)\) and \(x \in \mathbb {R}^{p+1}\), \(\mathrm {E}_{X,Y}[R_n(\varvec{\theta })]= 0\). Therefore \(R_n(\varvec{\theta })=o_P(1)\). Indeed, for any constant \(\epsilon >0\) and by the inequality of Chebyshev,

$$\begin{aligned} P\left[ \left| R_n(\varvec{\theta })\right|>\epsilon \right] = P\left[ \left| R_n(\varvec{\theta })-\mathrm {E}_{X,Y}\left[ R_n(\varvec{\theta })\right] \right| >\epsilon \right] \\ \le \frac{1}{\epsilon ^2} \text {Var}_{X,Y}\left[ R_n(\varvec{\theta })\right] =o(1). \end{aligned}$$

For the quantity \(G_n(\varvec{\theta })\) in (A.1), we thus obtain

$$\begin{aligned} G_n(\varvec{\theta })&=\mathrm {E}_{Y|X}[G_n(\varvec{\theta })|\mathcal {X}]-\frac{2}{\sqrt{nh}}\left( \sum _{i=1}^nL_\omega (Y_i^*)\varvec{Z}_iK_i-\mathrm {E}_{Y|X}\left[ L_\omega (Y_i^*)|X_i\right] \varvec{Z}_iK_i\right) ^{\text{ T }} \varvec{\theta } + R_n(\varvec{\theta })\\&=\frac{-2}{\sqrt{nh}}\sum _{i=1}^n\mathrm {E}_{Y|X}\left[ L_\omega \left( Y_i^*|X_i\right) \right] (\varvec{\theta }^{\text{ T }} \varvec{Z}_i)K_i +\frac{1}{2}\varvec{\theta }^{\text{ T }} \gamma (\omega ,x)f_X(x)\mathbf {S}\varvec{\theta }(1+o_P(1))\\&\quad -\frac{2}{\sqrt{nh}}\left( \sum _{i=1}^nL_\omega (Y_i^*)\varvec{Z}_iK_i-\mathrm {E}_{Y|X}\left[ L_\omega (Y_i^*)|X_i\right] \varvec{Z}_iK_i\right) ^{\text{ T }} \varvec{\theta } + R_n(\varvec{\theta })\\&=\frac{1}{2}\varvec{\theta }^{\text{ T }} \gamma (\omega ,x)f_X(x)\mathbf {S}\varvec{\theta }-\frac{2}{\sqrt{nh}}\left( \sum _{i=1}^nL_\omega (Y_i^*)\varvec{Z}_iK_i\right) ^{\text{ T }} \varvec{\theta } + r_n(\varvec{\theta })\\&=\frac{1}{2}\varvec{\theta }^{\text{ T }} \gamma (\omega ,x)f_X(x)\mathbf {S}\varvec{\theta }+\mathbf {W}_n^{\text{ T }} \varvec{\theta } + r_n(\varvec{\theta }) \end{aligned}$$

with \(r_n(\varvec{\theta })=o_P(1)\) for each fixed \(\varvec{\theta }\) and

$$\begin{aligned} \mathbf {W}_n=\frac{-2}{\sqrt{nh}}\left( \sum _{i=1}^nL_\omega (Y_i^*)\varvec{Z}_iK_i\right) . \end{aligned}$$

It easy to see that \(\mathbf {W}_n\) has a bounded second moment and hence is stochastically bounded. For \(c>0\) and by Assumption (A1) (\(\varphi (t|z)\) is bounded), we have, with \(\varvec{z}_u=\left( 1,u,u^2,\cdots ,u^p\right) ^{\text{ T }} \), \(y_u^*=y-\tau _\omega (x)-\tau _\omega ^{(1)}(x)(hu)-\cdots -\frac{\tau _\omega ^{(p)}(x)}{p!}(hu)^p\), using Hölder’s inequality and Assumption (A3),

$$\begin{aligned} \mathrm {E}_{X,Y}[\mathbf {W}_n\mathbf {W}_n^{\text{ T }} ]= & {} \frac{4}{nh}\mathrm {E}_{X,Y}\left[ \left( \sum _{i=1}^nL_w(Y_i^*)\varvec{Z}_iK_i\right) \left( \sum _{i=1}^nL_w(Y_i^*)\varvec{Z}_iK_i\right) ^{\text{ T }} \right] \\\le & {} \frac{4c}{nh}\mathrm {E}_{X,Y}\left[ \left( \sum _{i=1}^nL_w(Y_i^*)^2K_i^2\varvec{Z}_i\varvec{Z}_i^{\text{ T }} \right) ^{\text{ T }} \right] \\= & {} \frac{4c}{h}\int \int L_w(y_v^*)^2\varvec{z}\varvec{z}^{\text{ T }} f_{Y|X}(y|v){\mathrm{d}}yK^2\left( \frac{v-x}{h}\right) f_X(v){\mathrm{d}}v\\= & {} \frac{4c}{h}\int \int L_w(y-\tau _\omega (x)-\tau _\omega ^{(1)}(x)(v-x)-\cdots -\frac{\tau _\omega ^{(p)}(x)}{p!}(v-x)^p)^2\varvec{z}\varvec{z}^{\text{ T }}\\&\quad f_{Y|X}(y|v){\mathrm{d}}yK^2\left( \frac{v-x}{h}\right) f_X(v){\mathrm{d}}v\\= & {} 4c\int \int L_w(y_u^*)^2f_{Y|X}(y|u){\mathrm{d}}y\varvec{z}_u\varvec{z}_u^{\text{ T }} K^2(u)f_X(u+xh){\mathrm{d}}u\\= & {} 4c\int \int \left| L_w(y_u^*)\right| ^{2}f_{Y|X}(y|u){\mathrm{d}}y\varvec{z}_u\varvec{z}_u^{\text{ T }} K^2(u)f_X(u+xh){\mathrm{d}}u\\\le & {} 4c\int \left( \int \left| L_w(y_u^*)\right| ^{2+\delta }f_{Y|X}(y|u){\mathrm{d}}y\right) ^{\frac{2}{2+\delta }}\varvec{z}_u\varvec{z}_u^{\text{ T }} K^2(u)f_X(u+xh){\mathrm{d}}u\\= & {} O\left( \mathrm {E}_X\left[ (K)^2\varvec{z}_u\varvec{z}_u^{\text{ T }}\right] \right) = O(1) \end{aligned}$$

which also implies that \(\mathrm {E}_{Y,X}[\varvec{W}_n]=O(1)\) as a result of Jensen’s inequality.

Note that

$$\begin{aligned} G_n(\varvec{\theta })-\mathbf {W}_n^{\text{ T }} \varvec{\theta } \end{aligned}$$

is a convex function of \(\varvec{\theta }\) which converges in probability to the convex function \(\frac{1}{2}\varvec{\theta }^{\text{ T }} \gamma (w,x)f_X(x)\mathbf {S}\varvec{\theta }\).

By the convexity lemma, Pollard (1991), for any compact subset \(\varLambda \in \mathbb {R}^{p+1}\)

$$\begin{aligned} \sum _{\varvec{\theta }\in \varLambda }|r_n(\varvec{\theta })|=o_P(1). \end{aligned}$$

So the quadratic approximation to the convex function \(G_n(\varvec{\theta })\) holds uniformly for \(\varvec{\theta }\) in any compact set. Then, using the convexity assumption again, the minimizer \(\widehat{\varvec{\theta }}\) of \(G_n(\varvec{\theta })\) converges in probability to the minimizer of the quadratic function \(-(\gamma (\omega ,x)f_X(x)\mathbf {S})^{-1}\mathbf {W}_n\)

$$\begin{aligned} \widehat{\varvec{\theta }}+(\gamma (\omega ,x)f_X(x)\mathbf {S})^{-1}\mathbf {W}_n = o_P(1). \end{aligned}$$

In matrix notation, we have

$$\begin{aligned}&\sqrt{nh}\begin{pmatrix} \widehat{\beta }_0-\tau _\omega (x)\\ h(\widehat{\beta }_1-\tau ^{(1)}_\omega (x))\\ \vdots \\ h^p\left( \widehat{\beta }_p-\frac{\tau ^{(p)}_\omega (x)}{p!}\right) \end{pmatrix} - \frac{2}{\sqrt{nh}\gamma (\omega ,x)f_X(x)}\begin{pmatrix}\mu _0 &{} \mu _1 &{} \cdots &{} \mu _p \\ \mu _1 &{} \mu _2 &{} \cdots &{} \mu _{p+1} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mu _p &{} \mu _{p+1} &{} \cdots &{} \mu _{2p}\end{pmatrix}^{-1}\left( \sum _{i=1}^nL_\omega (Y_i^*)\varvec{Z}_iK_i\right) =o_P(1)\\ \end{aligned}$$

with

$$\begin{aligned} \mathbf {W}_n^*&=\left( \sum _{i=1}^nL_\omega (Y_i^*)\varvec{Z}_iK_i\right) =\sum _{i=1}^n L_\omega (Y_i^*)\begin{pmatrix} 1\\ \frac{X_i-x}{h}\\ \vdots \\ \left( \frac{X_i-x}{h}\right) ^p \end{pmatrix}K\left( \frac{X_i-x}{h}\right) \end{aligned}$$

and hence

$$\begin{aligned} \mathbf {S}^{-1}\mathbf {W}_n^*&=\sum _{i=1}^nL_\omega (Y_i^*)\begin{pmatrix}\mu _0 &{} \mu _1 &{} \cdots &{} \mu _p \\ \mu _1 &{} \mu _2 &{} \cdots &{} \mu _{p+1} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mu _p &{} \mu _{p+1} &{} \cdots &{} \mu _{2p}\end{pmatrix}^{-1} \begin{pmatrix} 1\\ \frac{X_i-x}{h}\\ \vdots \\ \left( \frac{X_i-x}{h}\right) ^p \end{pmatrix}K\left( \frac{X_i-x}{h}\right) . \end{aligned}$$

So

$$\begin{aligned}&\sqrt{nh}\begin{pmatrix} \widehat{\beta }_0-\tau _\omega (x)\\ h(\widehat{\beta }_1-\tau ^{(1)}_\omega (x))\\ \vdots \\ h^p\left( \widehat{\beta }_p-\frac{\tau ^{(p)}_\omega (x)}{p!}\right) \end{pmatrix} \nonumber \\&- \frac{2}{\sqrt{nh}\gamma (\omega ,x)f_X(x)}\sum _{i=1}^nL_\omega (Y_i^*)\begin{pmatrix}\mu _0 &{} \mu _1 &{} \cdots &{} \mu _p \\ \mu _1 &{} \mu _2 &{} \cdots &{} \mu _{p+1} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mu _p &{} \mu _{p+1} &{} \cdots &{} \mu _{2p}\end{pmatrix}^{-1} \begin{pmatrix} 1 \\ \frac{X_i-x}{h}\\ \vdots \\ \left( \frac{X_i-x}{h}\right) ^p \end{pmatrix}K\left( \frac{X_i-x}{h}\right) =o_P(1). \end{aligned}$$
(A.3)

The \((j+1)\)th component (for \(j=0,1,\ldots ,p\)) of the above equality is

$$\begin{aligned}&\sqrt{nh}\left( h^j\left( \frac{\widehat{\tau }^{(j)}_\omega (x)}{j!}-\frac{\tau ^{(j)}_\omega (x)}{j!}\right) -\frac{2}{nh\gamma (\omega ,x)f_X(x)}\sum _{i=1}^nL_\omega (Y_i^*)(\mathbf {S}^{-1}\varvec{Z}_{i})_{j+1}K_i\right) =o_P(1)\\&\quad \sqrt{nh}\left( h^j\left( \frac{\widehat{\tau }^{(j)}_\omega (x)}{j!}-\frac{\tau ^{(j)}_\omega (x)}{j!} \right) -V_{n,j}\right) =o_P(1), \end{aligned}$$

denoting \(V_{n,j}=\frac{U_{n,j}}{\gamma (\omega ,x)f_X(x)\text {det}(\mathbf {S})}\) and \(U_{n,j}=2(nh)^{-1}\sum _{i=1}^nL_\omega (Y_i^*)(\text {adj}(\mathbf {S})\mathbf {Z}_{i})_{j+1}K_i\), where \(\text {det}(\mathbf {S})\) is the determinant of \(\mathbf {S}\) and \(\text {adj}(\mathbf {S})\) is the adjugate matrix of \(\mathbf {S}\).

Equivalently, for any \(\epsilon >0\), we have

$$\begin{aligned} \mathrm {E}_{Y,X}\left[ \mathbf {P}\left. \left( \sqrt{nh}\left| h^j\left( \frac{\widehat{\tau }^{(j)}_\omega (x)}{j!}-\frac{\tau ^{(j)}_\omega (x)}{j!}\right) -V_{n,j}\right| \ge \epsilon \right| \mathcal {X} \right) \right] =o_P(1). \end{aligned}$$

This implies that

$$\begin{aligned} \mathbf {P}\left. \left( \sqrt{nh}\left| h^j\left( \frac{\widehat{\tau }^{(j)}_\omega (x)}{j!}-\frac{\tau ^{(j)}_\omega (x)}{j!}\right) -V_{n,j}\right| \ge \epsilon \right| \mathcal {X} \right) =o_P(1). \end{aligned}$$

Hence, the conditional asymptotic normality follows from that of \(U_{n,j}\), which is established with the help of Lemmas 1 and 2 stated in Section A.2. The proofs of the lemmas are provided in Section S6 of the Supplementary Material part. \(\square \)

1.2 A.2 Two lemmas

Lemma 1

Under the assumptions of Theorem 1, we have

$$\begin{aligned} \mathrm {E}_{Y|X}[U_{n,j}|\mathcal {X}]=dh^{p+1}(1+o_P(1)) \qquad \qquad \text{ and } \qquad \qquad \text {Var}_{Y|X}[U_{n,j}|\mathcal {X}]=\frac{v^2}{nh}(1+o_P(1)) \end{aligned}$$

where \( U_{n,j}=2(nh)^{-1}\sum _{i=1}^nL_\omega (Y_i^*)(\text {adj}(\mathbf {S})\mathbf {Z}_{i})_{j+1}K_i\),

$$\begin{aligned} d&=\frac{1}{(p+1)!}\tau _\omega ^{(p+1)}(x)\gamma (\omega ,x) (\text {adj}(\mathbf {S})\mathbf {c}_p)_{j+1}f_X(x)+\frac{1}{(p+2)!}\tau _\omega ^{(p+2)}(x)h\gamma (\omega ,x) (\text {adj}(\mathbf {S})\widetilde{\mathbf {c}}_p)_{j+1}f_X(x)\nonumber \\&\quad +\frac{1}{(p+1)!}\tau _\omega ^{(p+1)}(x)h\gamma (\omega ,x) (\text {adj}(\mathbf {S})\widetilde{\mathbf {c}}_p)_{j+1}f_X^{(1)}(x) \end{aligned}$$
(A.4)
$$\begin{aligned}&\text{ and } \qquad \qquad v^2=f_X(x)\int \left( 2L_\omega (y-\tau _\omega (x))\right) ^{2}f_{Y|X}(y|x){\mathrm{d}}y\int (\text {adj}(\mathbf {S})\mathbf {z}_v)_{j+1}^2 K^{2}\left( v\right) {\mathrm{d}}v \end{aligned}$$
(A.5)

with \(\mathbf {z}_v=\left( 1,v,v^2,\cdots ,v^p\right) ^{\text{ T }} \).

Lemma 2

Under Assumptions (A1)—(A5), we have

$$\begin{aligned} P\left[ \sqrt{nh}\frac{(U_{n,j}-dh^{p+1})}{v}\le t |\mathcal {X}\right] =\varPhi (t)+o_P(1), \end{aligned}$$

with d and v define as in (A.4) and (A.5), respectively.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, C., Gijbels, I. Local polynomial expectile regression. Ann Inst Stat Math 74, 341–378 (2022). https://doi.org/10.1007/s10463-021-00799-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-021-00799-y

Keywords

Navigation