Skip to main content
Log in

On Some Families of Modules for the Current Algebra

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Given a finite-dimensional module V for a finite-dimensional, complex semi-simple Lie algebra \(\mathcal {g}\), and a positive integer m, we construct a family of graded modules for the current algebra \(\mathcal {g}[t]\) indexed by simple C \(\mathcal {S}_{m}\)-modules. These modules are free of finite rank for the ring of symmetric polynomials and so can be localized to give finite-dimensional graded \(\mathcal {g}[t]\)-modules. We determine the graded characters of these modules and show that these graded characters admit a curious duality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, M., Chari, V.: Tilting modules for the current algebra of a simple Lie algebra, Proceedings of Symposia in Pure Mathematics (86): Recent Developments in Lie Algebras, Groups and Representation Theory 2012, 75–97

  2. Bennett, M., Chari, V.: Character Formulae and Realization of Tilting Modules for \(\mathcal {sl}_{2}[t]\), arXiv:1409.4464

  3. Bennett, M., Chari, V., Greenstein, J., Manning, N.: On homomorphisms between global Weyl modules. Represent. Theory 15, 733–752 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chari, V.: On the fermionic formula and the Kirillov-Reshetikhin conjecture. Int. Math. Res. Not. 12, 629–654 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chevalley, C.: Invariants of finite groups generated by reflections. Amer. J. Math. 77, 778–782 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chari, V.: B Ion BGG reciprocity for the current algebra. Compos. Math. 151, 1265–1287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chari, V., Fourier, G., Khandai, T.: A categorical approach to Weyl modules. Transform. Groups 15(3), 517–549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chari, V., Pressley, A.: Weyl modules for classical and quantum affine algebras Represent. Theory 5, 191–223 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Fulton, W., Harris, J.: Representation theory, 1991, Graduate Texts in Mathematics. Springer-Verlag, New York

  10. Humphreys, J.E.: Reflection groups and coxeter groups. Cambridge University Press (1990)

  11. Feigin, B.: Multi-dimensional Weyl modules and symmetric functions. Comm. Math. Phys. 251(3), 427–445 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kkoroshkin, A.: Highest weight categories and Macdonald Polynomials, arXiv:http://arXiv.org/abs/1312.7053

  13. Kleshchev, A.: Affine highest weight categories and affine quasihereditary algebras. Proc. Lond. Math. Soc. 100(4), 841–882 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Moura, A.: Restricted limits of minimal affinizations. Pac. J. M. 244, 359–397 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Bennet.

Additional information

Presented by Vyjayanthi Chari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennet, M., Jenkins, R. On Some Families of Modules for the Current Algebra. Algebr Represent Theor 20, 197–208 (2017). https://doi.org/10.1007/s10468-016-9637-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-016-9637-0

Keywords

Navigation