Skip to main content
Log in

Finite Noncommutative Geometries Related to \(\mathbb {F}_{p}[x]\)

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

It is known that irreducible noncommutative differential structures over \(\mathbb {F}_{p}[x]\) are classified by irreducible monics m. We show that the cohomology \(H_{\text {dR}}^{0}(\mathbb {F}_{p}[x]; m)=\mathbb {F}_{p}[g_{d}]\) if and only if Trace(m)≠ 0, where \(g_{d}=x^{p^{d}}-x\) and d is the degree of m. This implies that there are \({\frac {p-1}{pd}}{\sum }_{k|d, p\nmid k}\mu _{M}(k)p^{\frac {d}{k}}\) such noncommutative differential structures (μM the Möbius function). Motivated by killing this zero’th cohomology, we consider the directed system of finite-dimensional Hopf algebras \(A_{d}=\mathbb {F}_{p}[x]/(g_{d})\) as well as their inherited bicovariant differential calculi Ω(Ad;m). We show that Ad = CdχA1 is a cocycle extension where \(C_{d}=A_{d}^{\psi }\) is the subalgebra of elements fixed under ψ(x) = x + 1. We also have a Frobenius-fixed subalgebra Bd of dimension \(\frac {1}{d} {\sum }_{k | d} \phi (k) p^{\frac {d}{k}}\) (ϕ the Euler totient function), generalising Boolean algebras when p = 2. As special cases, \(A_{1}\cong \mathbb {F}_{p}(\mathbb {Z}/p\mathbb {Z})\), the algebra of functions on the finite group \(\mathbb {Z}/p\mathbb {Z}\), and we show dually that \(\mathbb {F}_{p}\mathbb {Z}/p\mathbb {Z}\cong \mathbb {F}_{p}[L]/(L^{p})\) for a ‘Lie algebra’ generator L with eL group-like, using a truncated exponential. By contrast, A2 over \(\mathbb {F}_{2}\) is a cocycle modification of \(\mathbb {F}_{2}((\mathbb {Z}/2\mathbb {Z})^{2})\) and is a 1-dimensional extension of the Boolean algebra on 3 elements. In both cases we compute the Fourier theory, the invariant metrics and the Levi-Civita connections within bimodule noncommutative geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beggs, E.J., Majid, S.: Gravity induced from quantum spacetime. Class. Quantum. Grav. 31(39), 035020 (2014)

    Article  MathSciNet  Google Scholar 

  2. Brzezinski, T.: Remarks on bicovariant differential calculi and exterior Hopf algebras. Lett. Math. Phys. 27, 287–300 (1993)

    Article  MathSciNet  Google Scholar 

  3. Carlitz, L.: A theorem of Dickson on irreducible polynomials. Proc. AMS. 3, 693–700 (1952)

    Article  MathSciNet  Google Scholar 

  4. Carlitz, L.: The Staudt-Clausen theorem. Math. Mag. 34, 131–146 (1961)

    Article  MathSciNet  Google Scholar 

  5. Connes, A.: Noncommutative Geometry. Academic Press, Cambridge (1994)

    MATH  Google Scholar 

  6. Dubois-Violette, M., Masson, T.: On the first-order operators in bimodules. Lett. Math. Phys. 37, 467–474 (1996)

    Article  MathSciNet  Google Scholar 

  7. Dubois-Violette, M., Michor, P.W.: Connections on central bimodules in noncommutative differential geometry. J. Geom. Phys. 20, 218–232 (1996)

    Article  MathSciNet  Google Scholar 

  8. Fine, N. J.: Binomial coefficients modulo a prime. Amer. Math. Monthly 54, 589–592 (1947)

    Article  MathSciNet  Google Scholar 

  9. Kunz, E.: Kähler Differentials, Adv. Lec. Math. Series, p. 402. Springer Vieweg, Berlin (1986)

    Book  Google Scholar 

  10. Lang, S.: Algebra. 3rd edn. Addison-Wesley, Boston (1993)

  11. Ling, S., Xing, C.: Coding Theory, A First Course. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  12. Lucas, E.: Théorie des fonctions numériques simplement pe?riodiques. Amer. J. Math. 1, 184–196 (1878). 197–240; 289–321

    Article  MathSciNet  Google Scholar 

  13. Luschny, P.: Swinging Wilson quotients, entry https://oeis.org/A163210, in The Online Encyclopedia of Integer Sequences

  14. Mahler, K.: An interpolation series for continuous functions of a p-adic variable. J. Reine Angew. Math. 199, 23–34 (1958)

    MathSciNet  MATH  Google Scholar 

  15. Majid, S.: A quantum groups primer. L.M.S Lect. Notes 292, 179 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Majid, S.: Foundations of Quantum Group Theory, Cambridge Univ Press (2000) paperback ed

  17. Majid, S.: Cross product quantisation, nonAbelian cohomology and twisting of Hopf algebras. In: Proc. Generalised Symmetries, World Sci, Clausthal, Germany (1993)

  18. Majid, S.: Quantum geometry of field extensions. J. Math. Phys. 40, 2311–2323 (1999)

    Article  MathSciNet  Google Scholar 

  19. Majid, S.: Noncommutative Riemannian geometry of graphs. J. Geom. Phys. 69, 74–93 (2013)

    Article  MathSciNet  Google Scholar 

  20. Majid, S.: Hodge star as braided Fourier transform. Alg. Repn. Theory 20, 695–733 (2017)

    Article  MathSciNet  Google Scholar 

  21. Majid, S.: Noncommutative differential geometry. In: Bullet, S., Fearn, T., Smith, F. (eds.) LTCC Lecture Notes Series: Analysis and Mathematical Physics, pp. 139–176. World Science (2017)

  22. Majid, S., Tao, W.-Q.: Generalised noncommutative geometry on finite groups and Hopf quivers. J. Noncomm. Geom. (41 pp), in press (2018)

  23. Python/sage code: https://github.com/mebassett/ncg-dehrahm-finitefield

  24. Rojas-Leon, A.: Exponential sums with large automorphism group. Contemp. Math. 566, 43–64 (2012)

    Article  MathSciNet  Google Scholar 

  25. Ruskey, F., Miers, C.R., Sadawa, J.: The number of irreducibles and Lyndon words with a given trace. Siam. J. Discrete 14, 240–245 (2001)

    Article  MathSciNet  Google Scholar 

  26. Schauenburg, P.: Hopf algebra extensions and monoidal categories. In: New Directions in Hopf Algebras, vol. 43, pp. 321–381. MSRI Publications (2002)

  27. Woronowicz, S.L.: Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys. 122, 125–170 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Majid.

Additional information

Presented by: Sarah Witherspoon

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassett, M.E., Majid, S. Finite Noncommutative Geometries Related to \(\mathbb {F}_{p}[x]\). Algebr Represent Theor 23, 251–274 (2020). https://doi.org/10.1007/s10468-018-09846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-018-09846-4

Keywords

Mathematics Subject Classification (2010)

Navigation