Skip to main content
Log in

A fast-locking low-jitter digitally-enhanced DLL dynamically controlled for loop-gain and stability

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Conventional structure of delay locked loops (DLLs) is modified to achieve better jitter and smaller lock time. In the proposed structure, analog charge pump is eliminated, to remove the problems of leakage current on output capacitance, and is replaced by combination of a digital accumulator (ACC) and a digital-to-analog converter. A programmable ACC is also proposed, to dynamically control the loop gain and lock time. When the loop enters to lock region at the first time, a lock detector block disables ACC and equivalent digital code is stored on a latch array. So, a fixed control voltage controls delay elements and the systematic jitter, due to periodic discharge of control voltage. RMS jitter of less than 33.5 and 1.6 ps are achieved at 20 and 625 MHz operating frequencies, respectively, when the supply is subject to 110 mV random noise and also 40 mV periodic noise, related to generated clock signals. Lock time is reduced from 38 to 2 µs at 20 MHz, and also from 900 to 45 ns at 600 MHz, when the proposed dynamic control mechanism is applied on the loop. Total power consumption for the main core of DLL is 7.85 mW at 1.8 V supply in 0.18 µm CMOS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. Jung, D.-H., An, Y.-J., Ryu, K., & Jung, S.-O. (2015). All-digital fast-locking delay-locked loop using cyclic-locking loop for DRAM. IEEE Transactions on Circuits and Systems II, Express Brief, 62(11), 1023–1027.

    Article  Google Scholar 

  2. Wang, Y., Liu, Y., Jiang, M., Jia, S., & Zhang, X. (2016). Delay-locked loop based frequency quadrupler with wide operating range and fast locking characteristics. In IEEE international symposium on circuits and systems, ISCAS 2016.

  3. Pasha, M.-T., Shah, Y.-A., & Wikner, J. (2015). A wide range all-digital delay locked loop for video applications. In European conference on circuit theory and design, ECCTD 2015.

  4. Chen, C.-C., & Liu, S.-I. (2007). An infinite phase shift delay-locked loop with voltage-controlled sawtooth delay line. IEEE Journal of Solid-State Circuits, 43(11), 2413–2421.

    Article  Google Scholar 

  5. Park, H.-G., Kim, S. Y., & Lee, K.-Y. (2012). A low power DLL based clock and data recovery circuit with wide range anti-harmonic lock. Analog Integrated Circuits and Signal Processing, 74, 355–364.

    Article  Google Scholar 

  6. Chang, R. C.-H., Chen, H.-M., & Huang, P.-J. (2008). A multi-phase-output delay-locked loop with a novel star-controlled phase/frequency detector. IEEE Transactions on Circuits and Systems-I, 55(9), 2483–2490.

    Article  MathSciNet  Google Scholar 

  7. Chang, H.-H., Lin, J.-W., Yang, C.-Y., & Liu, S.-I. (2002). A wide-range delay-locked loop with a fixed latency of one clock cycle. IEEE Journal of Solid-State Circuits, 37(8), 1021–1027.

    Article  Google Scholar 

  8. Kazeminia, S., Sofi-Mowloodi, S., & Hadidi, K. (2014). A 80-MHz-to-410-MHz 16-phases DLL based on improved dead-zone open-loop phase detector and reduced-gain charge pump. Journal of Circuits, System and Computers, 24(1), 1550001.

    Article  Google Scholar 

  9. Yang, R.-J., & Liu, S.-I. (2007). A 40–550 MHz harmonic-free all-digital delay-locked loop using a variable SAR algoritam. IEEE Journal of Solid-State Circuits, 42(2), 361–373.

    Article  Google Scholar 

  10. Rahimpour, H., Gholami, M., Miar-Naimi, H., & Ardeshir, Gh. (2014). All digital fast lock DLL-based frequency multiplier. Analog Integrated Circuits and Signal Processing, 78(3), 819–826.

    Article  Google Scholar 

  11. Kazeminia, S., Hadidi, K., & Khoei, A. (2013). A low jitter 110 MHz 16-phase delay locked loop based on a simple and sensitive phase detector. In 21st Iranian conference on electrical engineering (ICEE 2014).

  12. Kazeminia, S., Hadidi, K., & Khoei, A. (2015). A wide-range low-jitter PLL based on fast-response VCO and simplified straightforward methodology of loop stabilization in integer-N PLLs. Journal of Circuits, Systems and Computers, 24(7), 1550104-1–1550104-24.

    Article  Google Scholar 

  13. Hanumolu, P. K., Wei, G.-Y., & Moon, U.-K. (2008). A wide-tracking range clock and data recovery circuit. IEEE Journal of Solid-State Circuits, 43(2), 425–439.

    Article  Google Scholar 

  14. Heydari, P., & Pedram, M. (2000). Analysis of jitter due to power-supply noise in phase-locked loops. In IEEE custom integrated circuits conference, pp. 443–446.

  15. Gholami, M. (2016). Total jitter of delay–locked loops due to four main jitter sources. IEEE Transaction on Very Large Scale Integration (VLSI) Systems, 24(6), 2040–2049.

    Google Scholar 

  16. Gholami, M., & Ardeshir, G. (2013). Analysis of DLL jitter due to voltage-controlled delay line. Circuits, Systems and Signal Processing, 32(5), 2119–2135.

    Article  Google Scholar 

  17. Gholami, M., & Ardeshir, G. (2014). Jitter of delay-locked loops due to PFD. IEEE Transaction on Very Large Scale Integration (VLSI) Systems, 22(10), 2176–2180.

    Article  Google Scholar 

  18. Razavi, B. (1994). Principles of data conversion system design. Wiley: Wiley-IEEE Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarang Kazeminia Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazeminia, S., Abdollahi, R. & Hejazi, A. A fast-locking low-jitter digitally-enhanced DLL dynamically controlled for loop-gain and stability. Analog Integr Circ Sig Process 94, 507–517 (2018). https://doi.org/10.1007/s10470-018-1109-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1109-5

Keywords

Navigation