Skip to main content
Log in

Stability Analysis of Causal Integral Evolution Impulsive Systems on Time Scales

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this article, we present the existence, uniqueness, Ulam-Hyers stability and Ulam-Hyers-Rassias stability of semilinear nonautonomous integral causal evolution impulsive integro-delay dynamic systems on time scales, with the help of a fixed point approach. We use Grönwall’s inequality on time scales, an abstract Gröwall’s lemma and a Picard operator as basic tools to develop our main results. To overcome some difficulties, we make a variety of assumptions. At the end an example is given to demonstrate the validity of our main theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal R P, Arshad S, Lupulescu V. Evolution equations with causal operators. Differ Equ Appl, 2015, 7(1): 15–26

    Google Scholar 

  2. Ryan E P, Sangwin C J. Systems of controlled functional differential equations and adaptive tracking. Syst Control Lett, 2002, 47: 365–374

    Article  Google Scholar 

  3. Agarwal R P, Awan A S, ÓRegan D, Younus A. Linear impulsive Volterra integro-dynamic system on time scales. Adv Differ Equ, 2014, 2014(6): 1–17

    Google Scholar 

  4. Ahmad M, Zada A, Alzabut J. Stability analysis of a nonlinear coupled implicit switched singular fractional differential system with p-Laplacian. Adv Differ Equ, 2019, 2019(436): 1–22

    Google Scholar 

  5. Ahmad M, Zada A, Alzabut J. Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type. Demonstr Math, 2019, 52(1): 283–295

    Article  Google Scholar 

  6. Ali Z, Kumam P, Shah K, Zada A. Investigation of Ulam stability results of a coupled system of nonlinear implicit fractional differential equations. Mathematics, 2019, 7(4): 1–26

    Article  Google Scholar 

  7. Alsina C, Ger R. On some inequalities and stability results related to the exponential function. J Inequal Appl, 1998, 2: 373–380

    Google Scholar 

  8. Corduneanu C. Functional equations with causal operators. Stability and Control Taylor and Francis London: Theory Methods and applications, 2002

  9. Corduneanu C. A modified LQ-optimal control problem for causal functional differential equations. Nonlinear Dyn Syst Theory, 2004, 4: 139–144

    Google Scholar 

  10. András S, Mészáros A R. Ulam-Hyers stability of dynamic equations on time scales via Picard operators. Appl Math Comput, 2013, 209: 4853–4864

    Google Scholar 

  11. Bainov D D, Dishliev A. Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population. Comp Rend Bulg Scie, 1989, 42: 29–32

    Google Scholar 

  12. Bainov B B, Simenov P S. Systems with impulse effect stability theory and applications. Ellis Horwood Limited: Chichester UK, 1989

    Google Scholar 

  13. Bedivan D M, O’Regan D. The set of solutions for abstract Volterra equations in Lp([0, a], ℝn). Appl Math Lett, 1999, 12: 7–11

    Article  Google Scholar 

  14. O’Regan D. A note on the topological structure of the solutions set of abstract Volterra equations//Proceedings of the Royal Irish Academy-Section. Mathematical and Physical Sciences, 1999: 99

  15. O’Regan D, Precup R. Existence criteria for integral equations in Banach spaces. J Ineq Appl, 2001, 6: 77–97

    Google Scholar 

  16. Ryan E P, Sangwin C J. Controlled functional differential equations and adaptive tracking. System Control Letters, 2002, 47: 365–374

    Article  Google Scholar 

  17. Zhukovskii E S, Alves M J. Abstract Volterra Operators. Russian Mathematics, 2008, 52: 1–4

    Article  Google Scholar 

  18. Karakostas G. Uniform asymptotic stability of causal operator equations. J Integral Equ, 1983, 5: 59–71

    Google Scholar 

  19. Tonelli L. Sulle equazioni funzionali di Vollterra. Bulletin of Callcutta Mathematical Sociaty, 1930, 20: 31–48

    Google Scholar 

  20. Bohner M, Peterson A. Dynamic equations on time scales: an introduction with applications. USA: Birkhäuser Boston Mass, 2001

    Book  Google Scholar 

  21. Bohner M, Peterson A. Advances in dynamics equations on time scales. USA: Birkhäuser Boston Mass, 2003

    Book  Google Scholar 

  22. Dachunha J J. Stability for time varying linear dynamic systems on time scales. J Comput Appl Math, 2005, 176(2): 381–410

    Article  Google Scholar 

  23. Hamza A, Oraby K M. Stability of abstract dynamic equations on time scales. Adv Differ Equ, 2012, 2012(143): 1–15

    Google Scholar 

  24. Hilger S. Analysis on measure chains-A unified approach to continuous and discrete calculus. Result math, 1990, 18(1/2): 18–56

    Article  Google Scholar 

  25. Hyers D H. On the stability of the linear functional equation. Proc Nat Acad Sci USA, 1941, 27(4): 222–224

    Article  Google Scholar 

  26. Jung S-M. Hyers-Ulam stability of linear differential equations of first order. Appl Math Lett, 2004, 17(10): 1135–1140

    Article  Google Scholar 

  27. Jung S-M. Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis. New York: Springer Optim Appl Springer, 2011: 48

    Book  Google Scholar 

  28. Li Y, Shen Y. Hyers-Ulam stability of linear differential equations of second order. Appl Math Lett, 2010, 23(3): 306–309

    Article  Google Scholar 

  29. Li T, Zada A. Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces. Adv Differ Equ, 2016, 2016(153): 1–8

    Google Scholar 

  30. Lupulescu V, Zada A. Linear impulsive dynamic systems on time scales. Electron J Qual Theory Differ Equ, 2010, 2010(11): 1–30

    Article  Google Scholar 

  31. Nenov S I. Impulsive controllability and optimization problems in population dynamics. Nonlinear Anal Theory Methods Appl, 1999, 36(7): 881–890

    Article  Google Scholar 

  32. Obłoza M. Hyers stability of the linear differential equation. Rocznik Nauk: Dydakt Prace Mat, 1993: 259–270

    Google Scholar 

  33. Obłoza M. Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk: Dydakt Prace Mat, 1997, 14: 141–146

    Google Scholar 

  34. Pötzsche C, Siegmund S, Wirth F. A spectral characterization of exponential stability for linear time-invariant systems on time scales. Discrete Contin Dyn Sys, 2003, 9(5): 1223–1241

    Article  Google Scholar 

  35. Rassias T M. On the stability of linear mappings in Banach spaces. Proc Amer Math Soc, 1978, 72(2): 297–300

    Article  Google Scholar 

  36. Riaz U, Zada A, Ali Z, Ahmad M, Xu J, Fu Z. Analysis of nonlinear coupled systems of impulsive fractional differential equations with hadamard derivatives. Math Probl Eng, 2019, 2019: 1–20

    Article  Google Scholar 

  37. Riaz U, Zada A, Ali Z, Cui Y, Xu J. Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives. Adv Differ Equ, 2019, 2019(226): 1–27

    Google Scholar 

  38. Ahangar R. Nonanticipating dynamical model and optimal control. Appl Math Lett, 1989, 2: 15–18

    Article  Google Scholar 

  39. Rizwan R, Zada A. Nonlinear impulsive Langevin equation with mixed derivatives. Math Meth App Sci, 2020, 43(1): 427–442

    Article  Google Scholar 

  40. Rizwan R, Zada A, Wang X. Stability analysis of non linear implicit fractional Langevin equation with non-instantaneous impulses. Adv Differ Equ, 2019, 2019(85): 1–31

    Google Scholar 

  41. Shah R, Zada A. A fixed point approach to the stability of a nonlinear Volterra integrodifferential equations with delay. Hacettepe J Math Stat, 2018, 47(3): 615–623

    Google Scholar 

  42. Shah S O, Zada A, Hamza A E. Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales. Qual Theory Dyn Syst, 2019, 18(3): 825–840

    Article  Google Scholar 

  43. Shah S O, Zada A. On the stability analysis of non-linear Hammerstein impulsive integro-dynamic system on time scales with delay. Punjab Univ J Math, 2019, 51(7): 89–98

    Google Scholar 

  44. Shah S O, Zada A. Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous impulses on time scales. Appl Math Comput, 2019, 359: 202–213

    Google Scholar 

  45. Stamov G, Alzabut J. Almost periodic solutions of impulsiveintegro-differential neural networks. Math Model Anal, 2010, 15(4): 505–516

    Article  Google Scholar 

  46. Stamov G, Stamova I, Alzabut J. Existence of almost periodic solutions for strongly stable nonlinear impulsive differential-difference equations. Nonlinear Anal Hybri, 2012, 6(2): 818–823

    Article  Google Scholar 

  47. Ulam S M. A collection of the mathematical problems. London: Interscience Publisheres New York, 1960

    Google Scholar 

  48. Ulam S M. Problem in modern mathematics. Science Editions J Wiley and Sons Inc Nework, 1964

    Google Scholar 

  49. Wang X, Arif M, Zada A. β-Hyers-Ulam-Rassias stability of semilinear nonautonomous impulsive system. Symmetry, 2019, 231(11): 1–18

    Google Scholar 

  50. Wang J, Fečkan M, Tian Y. Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediterr J Math, 2017, 14(46): 1–21

    Google Scholar 

  51. Wang J, Fečkan M, Zhou Y. Ulam’s type stability of impulsive ordinary differential equations. J Math Anal Appl, 2012, 395: 258–264

    Article  Google Scholar 

  52. Wang J, Fečkan M, Zhou Y. On the stability of first order impulsive evolution equations. Opuscula Math, 2014, 34(3): 639–657

    Article  Google Scholar 

  53. Wang J, Li X. A uniform method to Ulam-Hyers stability for some linear fractional equations. Mediterr J Math, 2016, 13: 625–635

    Article  Google Scholar 

  54. Wang J, Zada A, Ali W. Ulam’s-type stability of first-order impulsive differential equations with variable delay in quasi-Banach spaces. Int J Nonlin Sci Num, 2018, 19(5): 553–560

    Article  Google Scholar 

  55. Wang J, Zada A, Waheed H. Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value problem. Math Meth App Sci, 2019, 42(18): 6706–6732

    Article  Google Scholar 

  56. Wang J, Zhang Y. A class of nonlinear differential equations with fractional integrable impulses. Com Nonl Sci Num Sim, 2014, 19: 3001–3010

    Article  Google Scholar 

  57. Younus A, O’Regan D, Yasmin N, Mirza S. Stability criteria for nonlinear Volterra integro-dynamic systems. Appl Math Inf Sci, 2017, 11(5): 1509–1517

    Article  Google Scholar 

  58. Zada A, Alam L, Kumam P, Kumam W, Ali G, Alzabut J. Controllability of impulsive non-linear delay dynamic systems on time scale. IEEE Access, 2020. Doi: ACCESS-2020-14723

  59. Zada A, Ali S. Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses. Int J Nonlinear Sci Numer Simul, 2018, 19(7): 763–774

    Article  Google Scholar 

  60. Zada A, Ali W, Farina S. Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses. Math Methods Appl Sci, 2017, 40(15): 5502–5514

    Article  Google Scholar 

  61. Zada A, Ali W, Park C. Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type. Appl Math Comput, 2019, 350: 60–65

    Google Scholar 

  62. Zada A, Alzabut J, Waheed H, Popa I L. Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions. Adv Differ Equ, 2020, 2020(64): 1–50

    Google Scholar 

  63. Zada A, Mashal A. Stability analysis of nth order nonlinear impulsive differential equations in quasi-Banach space. Numer Func Anal Opt, 2020, 41(3): 294–321

    Article  Google Scholar 

  64. Zada A, Shah O, Shah R. Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems. Appl Math Comput, 2015, 271: 512–518

    Google Scholar 

  65. Zada A, Shah S O. Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses. Hacettepe J Math Stat, 2018, 47(5): 1196–1205

    Google Scholar 

  66. Zada A, Shah S O, Li Y. Hyers-Ulam stability of nonlinear impulsive Volterra integro-delay dynamic system on time scales. J Nonlinear Sci Appl, 2017, 10(11): 5701–5711

    Article  Google Scholar 

  67. Zada A, Shaleena S, Li T. Stability analysis of higher order nonlinear differential equations in β-normed spaces. Math Meth App Sci, 2019, 42(4): 1151–1166

    Article  Google Scholar 

  68. Zada A, Waheed H, Alzabut J, Wang X. Existence and stability of impulsive coupled system of fractional integrodifferential equations. Demonstr Math, 2019, 52(1): 296–335

    Article  Google Scholar 

  69. Makhlouf A B, Boucenna D, Hammami M A. Existence and stability results for generalized fractional differential equations. Acta Mathematica Scientia, 2020, 40: 141–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiafa Xu  (徐家发).

Additional information

The first author is supported by Talent Project of Chongqing Normal University (02030307–0040), the China Posdoctoral Science Foundation (2019M652348), Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0123), and Technology Research Foundation of Chongqing Educational Committee (KJQN202000528, KJQN201900539).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Pervaiz, B., Zada, A. et al. Stability Analysis of Causal Integral Evolution Impulsive Systems on Time Scales. Acta Math Sci 41, 781–800 (2021). https://doi.org/10.1007/s10473-021-0310-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-021-0310-2

Key words

2010 MR Subject Classification

Navigation