Skip to main content
Log in

Reduction Kinetics of Polymeric (Soluble) Manganese (IV) Oxide (MnO2) by Ferrous Iron (Fe2+)

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

In numerous freshwater and marine environments, ferrous iron (Fe2+) can react with manganese oxides in a redox reaction. However, there are few quantitative data describing reaction rates. A “soluble” (colloidal and nanoparticulate) phase manganese dioxide (MnO2) was used to obtain kinetic data on MnO2 reduction by Fe2+ with a stopped flow UV–Vis method. Stopped flow experiments were carried out in unbuffered solutions between pH 4.9 and 5.36 and also at pH 7. The reaction was determined to be first order with respect to MnO2 and Fe2+ and second order overall. It is important to subtract absorbance of Fe(III) products from the UV–Vis data and to acquire data from the first milliseconds of the reaction. After subtracting Fe(III) product absorbance, the average second-order rate constant was determined to be 4338 ± 249 M−1 s−1 at 25 °C and pH 5. Reactions of 5 μM MnO2 with 50 and 100 μM Fe2+ were more than 50 % complete in 1.77 and 0.7 s, respectively. The reaction is an inner sphere electron transfer process as an outer sphere process is symmetry-forbidden. Studies show that Mn(III) intermediates are produced during the reaction. The fast kinetics makes this reaction significant to consider when modeling manganese oxide and reduced iron in environmental redox systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atkins P, de Paula J (2010) Atkins’ physical chemistry. OUP, Oxford

    Google Scholar 

  • Brendel PJ, Luther GW III (1995) Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and freshwater sediments. Environ Sci Technol 29:751–761. doi:10.1021/es00003a024

    Article  Google Scholar 

  • Burdige DJ (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci Rev 35:249–284. doi:10.1016/0012-8252(93)90040-E

    Article  Google Scholar 

  • Burdige DJ, Dhakar SP, Nealson KH (1992) Effects of manganese oxide mineralogy on microbial and chemical manganese reduction. Geomicrobiol J 10:27–48

    Article  Google Scholar 

  • Duckworth OW, Sposito G (2005) Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(II) promoted by desferrioxamine B. Environ Sci Technol 39:6037–6044. doi:10.1021/es050275k

    Article  Google Scholar 

  • Gustafsson JP (2011) Visual minteq ver. 3.0. http://vminteq.lwr.kth.se

  • Herszage J, dos Santos Afonso M (2003) Mechanism of hydrogen sulfide oxidation by manganese(IV) oxide in aqueous solutions. Langmuir 19:9684–9692. doi:10.1021/la034016p

    Article  Google Scholar 

  • Herszage J, Afonso MD, Luther GW (2003) Oxidation of cysteine and glutathione by soluble polymeric MnO(2). Environ Sci Technol 37:3332–3338. doi:10.1021/es0340634

    Article  Google Scholar 

  • Lafferty BJ, Ginder-Vogel M, Sparks DL (2010) Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-flow experiments. Environ Sci Technol 44:8460–8466. doi:10.1021/es102013p

    Article  Google Scholar 

  • Landrot G, Ginder-Vogel M, Sparks DL (2010) Kinetics of chromium(III) oxidation by manganese(IV) oxides using quick scanning X-ray absorption fine structure spectroscopy (Q-XAFS). Environ Sci Technol 44:143–149. doi:10.1021/es901759w

    Article  Google Scholar 

  • Luther GW (2005) Manganese(II) oxidation and Mn(IV) reduction in the environment—two one-electron transfer steps versus a single two-electron step. Geomicrobiol J 22:195–203. doi:10.1080/01490450590946022

    Article  Google Scholar 

  • Luther GW, Popp JI (2002) Kinetics of the abiotic reduction of polymeric manganese dioxide by nitrite: an anaerobic nitrification reaction. Aquat Geochem 8:15–36

    Article  Google Scholar 

  • Madison AS, Tebo BM, Mucci A, Sundby B, Luther GW (2013) Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 341:875–878. doi:10.1126/science.1241396

    Article  Google Scholar 

  • McKenzie RM (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust J Soil Res 18:61–73

    Article  Google Scholar 

  • Perez Benito JF, Arias C (1992) Occurrence of colloidal manganese-dioxide in permanganate reactions. J Colloid Interface Sci 152:70–84. doi:10.1016/0021-9797(92)90009-b

    Article  Google Scholar 

  • Perez Benito JF, Brillas E, Pouplana R (1989) Identification of a soluble form of colloidal manganese(IV). Inorg Chem 28:390–392. doi:10.1021/ic00302a002

    Article  Google Scholar 

  • Perez Benito JF, Arias C, Amat E (1996) A kinetic study of the reduction of colloidal manganese dioxide by oxalic acid. J Colloid Interface Sci 177:288–297. doi:10.1006/jcis.1996.0034

    Article  Google Scholar 

  • Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci USA 96:3447–3454

    Article  Google Scholar 

  • Postma D (1985) Concentration of Mn and separation from Fe in sediments—I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C. Geochim Cosmochim Acta 49:1023–1033. doi:10.1016/0016-7037(85)90316-3

    Article  Google Scholar 

  • Postma D, Appelo CAJ (2000) Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling. Geochim Cosmochim Acta 64:1237–1247. doi:10.1016/s0016-7037(99)00356-7

    Article  Google Scholar 

  • Ravel B, Newville M (2005) Athena, artemis, hephaestus: data analysis for x-ray absorption spectroscopy using ifeffit. J Synchrotron Radiat 12:537–541. doi:10.1107/s0909049505012719

    Article  Google Scholar 

  • Stollenwerk KG (1994) Geochemical interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe, Arizona. Appl Geochem 9:353–369. doi:10.1016/0883-2927(94)90058-2

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. John Wiley and Sons, Inc, New York

    Google Scholar 

  • Tebo BM et al (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328

    Article  Google Scholar 

  • Van Cappellen P, Wang YF (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. Am J Sci 296:197–243

    Article  Google Scholar 

  • Villinski JE, O’Day PA, Corley TL, Conklin MH (2001) In situ spectroscopic and solution analyses of the reductive dissolution of MnO(2) by Fe(II). Environ Sci Technol 35:1157–1163. doi:10.1021/es001356d

    Article  Google Scholar 

  • Villinski JE, Saiers JE, Conklin MH (2003) The effects of reaction-product formation on the reductive dissolution of MnO2 by Fe(II). Environ Sci Technol 37:5589–5596. doi:10.1021/es034060r

    Article  Google Scholar 

  • Webb SM, Dick GJ, Bargar JR, Tebo BM (2005) Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). Proc Natl Acad Sci USA 102:5558–5563

    Article  Google Scholar 

  • Yao WS, Millero FJ (1993) The rate of sulfide oxidation by delta-MnO2 in seawater. Geochim Cosmochim Acta 57:3359–3365. doi:10.1016/0016-7037(93)90544-7

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the Chemical Oceanography Division of the National Science Foundation (Grant Number OCE-1155385) and National Aeronautics and Space Administration (Grant Number NNX12AG20G) to G.W.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Siebecker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siebecker, M., Madison, A.S. & Luther, G.W. Reduction Kinetics of Polymeric (Soluble) Manganese (IV) Oxide (MnO2) by Ferrous Iron (Fe2+). Aquat Geochem 21, 143–158 (2015). https://doi.org/10.1007/s10498-015-9257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-015-9257-z

Keywords

Navigation