Skip to main content
Log in

On the planar central configurations of rhomboidal and triangular four- and five-body problems

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We consider a symmetric five-body problem with three unequal collinear masses on the axis of symmetry. The remaining two masses are symmetrically placed on both sides of the axis of symmetry. Regions of possible central configurations are derived for the four- and five-body problems. These regions are determined analytically and explored numerically. The equations of motion are regularized using Levi-Civita type transformations and then the phase space is investigated for chaotic and periodic orbits by means of Poincaré surface of sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

Download references

Acknowledgements

We thank the editor and the anonymous reviewer for their constructive comments, which helped us improve the presentation of the manuscript. We also thank Professor Mihail Barbosu for correcting and improving the language of the manuscript. I. Szücs-Csillik is partially supported by a grant of the Romanian Ministry of National Education and Scientific Research, RDI Programme for Space Technology and Advanced Research - STAR, project number 513, 118/14.11.2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iharka Szücs-Csillik.

Appendix

Appendix

1.1 Derivation of \(R_{N_{\mu_{0}}}\)

The numerator of \(\mu_{0}\), \(N_{\mu_{0}}\) is positive when \({A}_{ {1}}{C}_{{2}}{C}_{{3}}>0\) and \({B}_{{1}}{B}_{{3}}{C}_{{2}}+{B}_{ {2}}{C}_{{1}}{C}_{{3}}<0\) or when both factors have opposite sign and the positive factor is greater than the absolute value of the negative factor. All these possibilities are listed below with the corresponding regions, where \(N_{\mu_{0}}>0\):

  1. 1.

    \({A}_{{1}}{C}_{{2}}{C}_{{3}}>0\) and \({B}_{{1}}{B}_{{3}}{C}_{{2}}+ {B}_{{2}}{C}_{{1}}{C}_{{3}}<0\): Using numerical approximation techniques we see that \(N_{\mu_{0}}>0\) in the following region:

    $$ R_{cN_{\mu_{0}}}(t,w)=R_{aN_{\mu_{0}}}(t,w)\cup R_{bN_{\mu_{0}}}(t,w), $$
    (56)

    where

    $$\begin{aligned} R_{aN_{\mu_{0}}}(t,w) =&\bigl\{ (t,w)|(0< t< 0.41\wedge0< w< 1) \\ &{}\vee(0.41< t< 1\wedge w>2.41)\vee\bigl(-1.73 \\ &{}< w\leq-1.5\wedge0.75\cdot d_{2}(w)< t< 1\bigr)\bigr\} , \\ R_{bN_{\mu_{0}}}(t,w) =&(w< -1.8\wedge0< t< 0.23)\vee(-1.43 \\ &{}< w\leq-1\wedge0.56< t< 1)\vee(-1< w \\ &{}< -0.41\wedge0.41< t< -w)\vee(2< w \\ &{}< 2.41\wedge0.41< t< 1). \end{aligned}$$
  2. 2.

    \({A}_{{1}}{C}_{{2}}{C}_{{3}}>0\) and \({B}_{{1}}{B}_{{3}}{C}_{{2}}+ {B}_{{2}}{C}_{{1}}{C}_{{3}}>0\). It is numerically confirmed that \({B}_{{1}}{B}_{{3}}{C}_{{2}}+{B}_{{2}}{C}_{{1}}{C}_{{3}}>{A}_{{1}} {C}_{{2}}{C}_{{3}}\) when \({A}_{{1}}{C}_{{2}}{C}_{{3}}>0\). Hence, \(N_{\mu_{0}}<0\) for all \((t,w)\) such that \({A}_{{1}}{C}_{{2}}{C}_{ {3}}>0\).

  3. 3.

    \({A}_{{1}}{C}_{{2}}{C}_{{3}}<0\) and \({B}_{{1}}{B}_{{3}}{C}_{{2}}+ {B}_{{2}}{C}_{{1}}{C}_{{3}}<0\). In this case using numerical approximation techniques we find that \(N_{\mu_{0}}\) is positive in the following region:

    $$\begin{aligned} R_{dN_{\mu_{0}}}(t,w) =&\bigl\{ (t,w)|(-1.73< w< -1.5 \\ &{}\wedge 0< t< 0.25)\vee\bigl(-1.5\leq w< -1 \\ &{}\wedge 0< t< 0.2\cdot d_{2}(w)\bigr)\vee(0< t< 0.41 \\ &{}\wedge -t< w < 0) \vee(0.41< t< 1 \\ &{}\wedge 0< w< 1)\bigr\} . \end{aligned}$$

Hence, \(N_{\mu_{0}}>0\) in (see Fig. 9b)

$$ R_{N_{\mu_{0}}}=R_{cN_{\mu_{0}}}(t,w)\cup R_{dN_{\mu_{0}}}(t,w). $$
(57)

1.2 Derivation of \(R_{N_{\mu_{2}}}\)

The numerator of \(\mu_{2}\), \(N_{\mu_{2}}\), is always positive when \(A_{3}B_{2}C_{1} >0\) and \(A_{1}A_{3}C_{2}+A_{2}C_{1}C_{3}<0\). It is not necessarily positive when \(A_{3}B_{2}C_{1}>0\) and \(A_{1}A_{3}C_{2}+A _{2}C_{1}C_{3}<0\) or \(A_{3}B_{2}C_{1}<0\) and \(A_{1}A_{3}C_{2}+A_{2}C _{1}C_{3}<0\). It might be positive in a segment of this region or might not be positive at all. We will list all these possibilities below with the corresponding regions, where \(N_{\mu_{2}}>0\).

  1. 1.

    \(A_{3}B_{2}C_{1}>0\) and \(A_{1}A_{3}C_{2}+A_{2}C_{1}B_{3}<0\). Using numerical approximation techniques we show that \(N_{\mu_{2}}>0\) in

    $$\begin{aligned} R_{aN_{\mu_{2}}}(t,w) =&aaN_{\mu_{2}}(t,w)\cup baN_{\mu_{2}}(t,w) \\ &{}\cup caN _{\mu_{2}}(t,w), \end{aligned}$$
    (58)

    where

    $$\begin{aligned} aaN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|\bigl(0< w\leq0.41\wedge d_{1}(w) \\ &{}< t< 1\bigr) \vee\bigl(0.41< w< 0.58 \\ &{}\wedge d_{1}(w)< t< 0.5\cdot d_{2}(w)\bigr) \\ &{}\vee\bigl(w>\sqrt{3}\wedge0< t< d_{1}(w)\bigr)\bigr\} , \\ baN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|(w\leq-2.41\wedge0.463 \\ &{}- 0.079\cdot w < t< 1)\vee\bigl(-2.41< w \\ &{}< -1.73\wedge0.463-0.079w \\ &{}< t < 0.5 d_{2}(w)\bigr)\bigr\} , \\ caN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|1< w< 1.73 \wedge 0< t< d_{1}(w)\bigr\} . \end{aligned}$$
  2. 2.

    \(A_{3}B_{2}C_{1}>0\) and \(A_{1}A_{3}C_{2}+A_{2}C_{1}B_{3}>0\). Using numerical approximation techniques we show that \(N_{\mu_{2}}>0\) in

    $$\begin{aligned} R_{bN_{\mu_{2}}}(t,w) =& abN_{\mu_{2}}(t,w)\cup bbN_{\mu_{2}}(t,w) \\ &{}\cup cbN _{\mu_{2}}(t,w), \end{aligned}$$
    (59)

    where

    $$\begin{aligned} abN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|{-}1.73< w< -1 \\ &{}\wedge 0< t< 0.5\cdot d_{2}(w)\bigr\} , \\ bbN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|1< w< 1.73 \wedge 0< t< d_{1}(w)\bigr\} , \\ cbN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|(w\leq-2.41\wedge 0< t< 1) \\ &{}\vee\bigl(-2.41< w< -1.73 \\ &{}\wedge 0< t< 0.5\cdot d_{2}(w)\bigr)\bigr\} . \end{aligned}$$
  3. 3.

    \(A_{3}B_{2}C_{1}<0\) and \(A_{1}A_{3}C_{2}+A_{2}C_{1}B_{3}<0\). Using numerical approximation techniques we show that \(N_{\mu_{2}}>0\) in

    $$ R_{cN_{\mu_{2}}}(t,w)=acN_{\mu_{2}}(t,w)\cup bcN_{\mu_{2}}(t,w), $$
    (60)

    where

    $$\begin{aligned} acN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|\bigl(-2.4< w< -2 \\ &{}\wedge 0.5\cdot d_{2}(w)< t< 1\bigr)\vee \\ &{}\wedge \bigl(1< w< 1.73\wedge d_{1}(w)< t< 1\bigr)\bigr\} , \\ bcN_{\mu_{2}}(t,w) =&\bigl\{ (t,w)|\bigl(1.31\cdot t^{2}-2.012 \cdot t+0.9 \\ &{}< w< 0.58\wedge0< t< d_{1}(w)\bigr) \\ &{}\vee \bigl(1.31\cdot t^{2}-2.012 \cdot t+0.9\leq w< 1 \\ &{}\wedge 0< t< 0.5 \cdot d_{2}(w)\bigr) \\ &{}\vee \bigl(w>1.732\wedge d_{1}(w)< t< 1\bigr)\bigr\} . \end{aligned}$$

    Therefore, \(N_{\mu_{2}}(t,w)>0\) in the region

    $$ R_{N_{\mu_{2}}}=R_{aN_{\mu_{2}}}(t,w)\cup R_{bN_{\mu_{2}}}(t,w)\cup R _{cN_{\mu_{2}}}(t,w). $$
    (61)

1.3 Derivation of \(R_{N_{\mu_{4}}}\)

\(N_{\mu_{4}}\) is always positive when \(A_{2}B_{1}C_{3}>0\) and \(A_{3}B_{1}B_{2}+A_{1}A_{2}C_{3}<0\). It is not necessarily positive when \(A_{2}B_{1}C_{3}>0\) and \(A_{3}B_{1}B_{2}+A_{1}A_{2}C_{3}<0\) or when both factors are negative. It might be positive in a segment of this region or might not be positive at all. We will list all these possibilities below with the corresponding regions, where \(N_{\mu_{4}}>0\).

  1. 1.

    When \(A_{2}B_{1}C_{3}>0\), and \(A_{3}B_{1}B_{2}+A_{1}A_{2}C_{3}<0\), \(N_{\mu_{4}}> 0\) in the region

    $$\begin{aligned} R_{aN_{\mu_{4}}} =&\bigl\{ (t,w)|(1.73< w< 2.4\wedge0.< t< d_{1}) \\ &{}\vee (-1< w< -0.41\wedge-w< t< 1) \\ &{}\vee (0< w< 1 \wedge d_{1}< t< 1) \\ &{}\vee \bigl(w< -377.64t^{4}+677.58t^{3}-458.06t^{2} \\ &{}+136.9t-17.79\wedge0.25< t< 0.6\bigr) \\ &{}\vee (-1< w< -0.41\wedge0< t< 0.05) \\ &{}\vee (1.73< w< 2.41\wedge d_{1}< t< 0.41)\bigr\} . \end{aligned}$$
  2. 2.

    When \(A_{2}B_{1}C_{3}>0\), and \(A_{3}B_{1}B_{2}+A_{1}A_{2}C_{3}>0\), \(N_{\mu_{4}}> 0\) in the region

    $$\begin{aligned} R_{bN_{\mu_{4}}} =&\bigl\{ (t,w)|(0.1< w< 1\wedge0.41< t< d_{1}) \\ &{}\vee (1< w< 1.73\wedge d_{1}< t< 0.41) \\ &{}\vee (1.73< w< 2.41\wedge0.41< t< 1) \\ &{}\vee (-1< w< -0.41\wedge-w< t< 1) \\ &{}\vee (0< w< 1\wedge d_{1}< t< 1) \\ &{}\vee (1< w< 1.73\wedge0< t< d_{1}) \\ &{}\vee \bigl(1.31t^{2}-2t+0.9< w< 1 \wedge 0< t< 0.41\bigr) \\ &{}\vee (1< w< 1.73\wedge0.41< t< 1) \\ &{}\vee (1.73< w< 2.41\wedge d_{1}< t< 0.41)\bigr\} . \end{aligned}$$
  3. 3.

    When \(A_{2}B_{1}C_{3}<0\), and \(A_{3}B_{1}B_{2}+A_{1}A_{2}C_{3}<0\), \(N_{\mu_{4}}>0\) in the region

    $$\begin{aligned} R_{cN_{\mu_{4}}} =&\bigl\{ (t,w)|(-0.41< w< 0\wedge0< t< -w) \\ &{}\vee\bigl(w< -1.3t^{2}-1.9t+3.44 \\ &{}\wedge d_{1}< t< 0.41\bigr) \\ &{}\vee(w>2.41\wedge0< t< d_{1})\bigr\} . \end{aligned}$$

    Therefore, \(N_{\mu_{4}}(t,w)>0\) in (see Fig. 11a)

    $$ R_{N_{\mu_{4}}}=R_{aN_{\mu_{4}}}(t,w)\cup R_{bN_{\mu_{4}}}(t,w)\cup R _{cN_{\mu_{4}}}(t,w). $$
    (62)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoaib, M., Kashif, A.R. & Szücs-Csillik, I. On the planar central configurations of rhomboidal and triangular four- and five-body problems. Astrophys Space Sci 362, 182 (2017). https://doi.org/10.1007/s10509-017-3161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3161-5

Keywords

Navigation