Skip to main content
Log in

Learning quasi-periodic robot motions from demonstration

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The goal of Learning from Demonstration is to automatically transfer the skill knowledge from human to robot. Current researches focus on the problem of modeling aperiodic/periodic robot motions and extracting dynamic task parameters from the recorded sensory information. However, it is still not adequate for describing complex behaviors in an unstructured environment, such as searching for an unknown fitting position or painting/polishing an irregular surface. The quasi-periodic and stochastic properties cause a high demand for generalization ability of the modeling techniques. This paper proposes a systematic framework for learning quasi-periodic robot motions, which contains three steps: decomposition, modeling, and synthesization. Firstly FFT transform is performed to identify all the frequencies in the quasi-periodic motion. Then the motion is decomposed into an offset component, a series of harmonic and corresponding envelop components based on the concept of equivalent transformation. The offset component is extracted by Empirical Mode Decomposition, harmonic is separated by notch filter, and envelope component is extracted by Hilbert Transform. These components are either periodic or aperiodic. The aperiodic motions can be modeled by conventional techniques such as Gaussian Mixture Model and recovered by Gaussian Mixture Regression. The periodic motions are modeled in closed-form expressions. Finally, they are synthesized together to regenerate the robot motion. This modeling process captures both the aperiodicity and periodicity of a quasi-periodic motion. Simulation and experiment show that the proposed methods are feasible, effective and can predict robot motions beyond demonstrations. With this generalization ability, it is able to reduce the programming difficulty and demonstration complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics & Autonomous Systems, 57(5), 469.

    Article  Google Scholar 

  • Asakawa, N., & Takeuchi, Y. (1997). In Proceedings of international conference on robotics and automation (vol. 3, pp. 1875–1879).

  • Billard, A., Epars, Y., Calinon, S., Schaal, S., & Cheng, G. (2004). Discovering optimal imitation strategies. Robotics and Autonomous Systems, 47(2), 69. Robot Learning from Demonstration.

    Article  Google Scholar 

  • Billard, A., & Hayes, G. M. (1999). Drama, a connectionist architecture for control and learning in autonomous robots. Adaptive Behavior, 7(1), 35.

    Article  Google Scholar 

  • Böckmann, A. (2017). T. Laue. In S. Behnke, R. Sheh, S. Sarıel, & D. D. Lee (Eds.), RoboCup 2016: robot world cup XX (pp. 33–44). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Calinon, S. (2016). A tutorial on task-parameterized movement learning and retrieval. Intelligent Service Robotics, 9(1), 1.

    Article  Google Scholar 

  • Calinon, S., Guenter, F., & Billard, A. (2007). On learning, representing, and generalizing a task in a humanoid robot. Piscataway: IEEE Press.

    Book  Google Scholar 

  • Chen, H., Cheng, H., Liu, J., Zhang, B., Zhang, G., & Fuhlbrigge, T. (2013). In: 2013 IEEE international conference on automation science and engineering (CASE), (pp. 540–545). 10.1109/CoASE.2013.6653989

  • Chen, H., Wang, J., Zhang, G., & Fuhlbrigge, T., & Kock, S. (2008). In 2008 IEEE conference on robotics, automation and mechatronics (pp. 24–29).

  • Chen, H., & Xi, N. (2012). Automated robot tool trajectory connection for spray forming process. Journal of Manufacturing Science & Engineering, 134(2), 021017.

    Article  Google Scholar 

  • Chen, H., Xi, N., Sheng, W., & Chen, Y. (2005). General framework of optimal tool trajectory planning for free-form surfaces in surface manufacturing. Journal of Manufacturing Science & Engineering, 127(1), 49.

    Article  Google Scholar 

  • Daji, H., Jinping, Z., & Jilan, S. (2003). Practical implementation of the hilbert–huang transform algorithm. Acta Oceanologica Sinica, 25(1), 1–11.

    Google Scholar 

  • Feldman, M. (2011). Hilbert transform applications in mechanical vibration. Hoboken: Wiley.

    Book  Google Scholar 

  • Graeve, K., Stueckler, J., & Behnke, S. (2011). Robotics, 1–8.

  • Gu, Y., Sheng, W., Crick, C., & Ou, Y. (2018). Automated assembly skill acquisition and implementation through human demonstration. Robotics and Autonomous Systems, 99, 1.

    Article  Google Scholar 

  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings Mathematical Physical & Engineering Sciences, 454(1971), 903.

    Article  MathSciNet  MATH  Google Scholar 

  • Ijspeert, A. (2003). Learning attractor landscapes for learning motor primitives. Neural Information Processing Systems, 15, 1523.

    Google Scholar 

  • Kharidege, A., Du, T. T., & Zhang, Y. (2017). A practical approach for automated polishing system of freeform surface path generation based on industrial arm robot. International Journal of Advanced Manufacturing Technology, 1, 1.

    Google Scholar 

  • Lee, S. H., Suh, I. H., Calinon, S., & Johansson, R. (2015). Autonomous framework for segmenting robot trajectories of manipulation task. Autonomous Robots, 38(2), 107.

    Article  Google Scholar 

  • Levitan, B. M., & Zhikov, V. V. (1982). Almost periodic functions and differential equations. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Marvel, J. A., Newman, W. S., Gravel, D. P. Zhang, G., Wang, J., & Fuhlbrigge, T. (2009). In: IEEE international conference on robotics & biomimetics.

  • Meier, F., & Schaal, S. (2016). A probabilistic representation for dynamic movement primitives, CoRR arXiv:1612.05932

  • Meng, F. (2008). Trajectory and spray control planning on unknown 3d surfaces for industrial spray painting robot, Dissertations & Theses Gradworks.

  • Moghtaderi, A., Flandrin, P., & Borgnat, P. (2013). Trend filtering via empirical mode decompositions. Computational Statistics & Data Analysis, 58(1), 114.

    Article  MathSciNet  MATH  Google Scholar 

  • Nagata, F., Watanabe, K., & Izumi, K. (2001). In: 2001 Proceedings on IEEE international conference on robotics and automation, (vol. 1, pp. 319–324).

  • Nehorai, A. (1985). A minimal parameter adaptive notch filter with constrained poles and zeros. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(4), 983.

    Article  Google Scholar 

  • Patterson, A. L. (1934). A fourier series method for the determination of the components of interatomic distances in crystals. Physical Review, 46, 372.

    Article  MATH  Google Scholar 

  • Potkonjak, V., Đorđević, G. S., Kostić, D., & Rašić, M. (2000). Dynamics of anthropomorphic painting robot Quality analysis and cost reduction. Robotics and Autonomous Systems, 32(1), 17.

    Article  Google Scholar 

  • Regalia, P. A. (1991). An improved lattice-based adaptive iir notch filter. IEEE Transactions on Signal Processing, 39(9), 2124.

    Article  Google Scholar 

  • Reiley, C. E., Plaku, E., & Hager, G. D. (2010). In: International conference of the ieee engineering in medicine and biology, (pp. 967–970).

  • Schaal, S. (2006). Dynamic movement primitives a framework for motor control in humans and humanoid robotics. Tokyo: Springer.

    Book  Google Scholar 

  • Schneider, M., & Ertel, W. (2010). Ieee/rsj international conference on intelligent robots and systems, (pp. 255–260).

  • Suh, S. H., Woo, I. K., & Noh, S. K. (1991). Automatic trajectory planning system (atps) for spray painting robots. Journal of Manufacturing Systems, 10(5), 396.

    Article  Google Scholar 

  • Tam, H. Y., Lui, C. H., & Mok, A. C. K. (1999). Robotic polishing of freeform surfaces using scanning paths. Journal of Materials Processing Technology, 95(1), 191.

    Article  Google Scholar 

  • Tow, A. W., Sünderhauf, N., Shirazi, S., Milford, M., & Leitner, J. (2017). What would you do? acting by learning to predict, CoRR arXiv:1703.02658

  • Vuković, N., Mitić, M., & Miljković, Z. (2015). Trajectory learning and reproduction for differential drive mobile robots based on gmm/hmm and dynamic time warping using learning from demonstration framework. Engineering Applications of Artificial Intelligence, 45, 388.

    Article  Google Scholar 

  • Webb, W. T. (1994). Modern quadrature amplitude modulation: Principles and applications for fixed and wireless channels. Piscataway: IEEE Press.

    Google Scholar 

  • Wensing, P. M., & Slotine, J.-J. (2016). Sparse control for dynamic movement primitives, CoRR arXiv:1611.05066

  • Wu, Z., & Huang, N. E. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 460(2046), 1597.

    Article  MATH  Google Scholar 

  • Wulfmeier, M., Rao, D., Wang, D. Z., Ondruska, P., & Posner, I. (2017). Large-scale cost function learning for path planning using deep inverse reinforcement learning. The International Journal of Robotics Research, 36(10), 1073.

    Article  Google Scholar 

  • Zeng, Y., Gong, J., & Ning, H. (2011). in International conference on electric information and control engineering (pp. 5570–5573).

  • Zhang, B., Gravel, D., Zhang, B., Wang, J., & Bell, A. (2011). In IEEE international conference on robotics and automation, ICRA 2011, Shanghai, China, 9–13 May (pp. 464–469).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cheng, H., Chen, H. et al. Learning quasi-periodic robot motions from demonstration. Auton Robot 44, 251–266 (2020). https://doi.org/10.1007/s10514-019-09891-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-019-09891-y

Keywords

Navigation