Skip to main content

Advertisement

Log in

Comparative Analysis of the Effects of Intravenous Administration of Placental Mesenchymal Stromal Cells and Neural Progenitor Cells Derived from Induced Pluripotent Cells on the Course of Acute Ischemic Stroke in Rats

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We compared the effects of placental mesenchymal stromal cells and neural progenitor cells derived from induced human pluripotent cells after their intravenous administration to rats in 24 h after transitory occlusion of the middle cerebral artery. The therapeutic effects were evaluated by the dynamics of animal survival, body weight, neurological deficit, and the volume of infarction focus in 7, 14, 30, and 60 days after surgery. Intravenous injection of neural progenitor cells produced a therapeutic effect on the course of experimental ischemic stroke by increasing animal survival in the most acute period and accelerating compensation of neurological deficit and body weight recovery. Neural progenitor cells were more effective than mesenchymal stromal cells from human placenta. The effectiveness of intravenous transplantation of neural progenitor cells in the model of occlusion of the middle cerebral artery is shown by us for the first time, although the therapeutic effect of their direct transplantation into the brain has already been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boltze J, Kowalski I, Geiger K, Reich D, Gunther A, Buhrle C, Egger D, Kamprad M, Emmrich F. Experimental treatment of stroke in spontaneously hypertensive rats by CD34+ and CD34– cord blood cells. Ger. Med. Sci. 2005;3. Doc09.

    PubMed  PubMed Central  Google Scholar 

  2. Chang DJ, Lee N, Park IH, Choi C, Jeon I, Kwon J, Oh SH, Shin DA, Do JT, Lee DR, Lee H, Moon H, Hong KS, Daley GQ, Song J. Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant. 2013;22(8):1427-1440.

    Article  PubMed  Google Scholar 

  3. Gubskiy IL, Namestnikova DD, Cherkashova EA, Chekhonin VP, Baklaushev VP, Gubsky LV, Yarygin KN. MRI Guiding of the Middle Cerebral Artery Occlusion in Rats Aimed to Improve Stroke Modeling. Transl. Stroke Res. 2018;9(4):417-425.

    Article  CAS  PubMed  Google Scholar 

  4. Kholodenko IV, Yarygin KN, Gubsky LV, Konieva AA, Tairova RT, Povarova OV, Kholodenko RV, Burunova VV, Yarygin VN, Skvortsova VI. Intravenous xenotransplantation of human placental mesenchymal stem cells to rats: comparative analysis of homing in rat brain in two models of experimental ischemic stroke. Bull. Exp. Biol. Med. 2012;154(1):118-123.

    Article  CAS  PubMed  Google Scholar 

  5. Koizumi J, Yoshida Y, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema. I. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Nosotchu. 1986;8(1):1-8.

    Article  Google Scholar 

  6. Liu J. Induced pluripotent stem cell-derived neural stem cells: new hope for stroke? Stem Cell Res. Ther. 2013;4(5):115.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu X, Ye R, Yan T, Yu S. P, Wei L, Xu G, Fan X, Jiang Y, Stetler R. A, Liu G, Chen J. Cell based therapies for ischemic stroke: from basic science to bedside. Prog. Neurobiol. 2014;115:92-115.

    Article  PubMed  Google Scholar 

  8. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84-91.

    Article  CAS  PubMed  Google Scholar 

  9. Nekrasov ED, Vigont VA, Klyushnikov SA, Lebedeva OS, Vassina EM, Bogomazova AN, Chestkov IV, Semashko TA, Kiseleva E, Suldina LA, Bobrovsky PA, Zimina OA, Ryazantseva MA, Skopin AY, Illarioshkin SN, Kaznacheyeva EV, Lagarkova MA, Kiselev SL. Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol. Neurodegener. 2016;11:27. doi: https://doi.org/10.1186/s13024-016-0092-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oki K, Tatarishvili J, Wood J, Koch P, Wattananit S, Mine Y, Monni E, Tornero D, Ahlenius H, Ladewig J, Brüstle O, Lindvall O, Kokaia Z. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells. 2012;30(6):1120-1133.

    Article  CAS  PubMed  Google Scholar 

  11. Polentes J, Jendelova P, Cailleret M, Braun H, Romanyuk N, Tropel P, Brenot M, Itier V, Seminatore C, Baldauf K, Turnovcova K, Jirak D, Teletin M, Côme J, Tournois J, Reymann K, Sykova E, Viville S, Onteniente B. Human induced pluripotent stem cells improve stroke outcome and reduce secondary degeneration in the recipient brain. Cell Transplant. 2012;21(12):2587-2602.

    Article  PubMed  Google Scholar 

  12. Sinden JD, Hicks C, Stroemer P, Vishnubhatla I, Corteling R. Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients. Stem Cells Dev. 2017;26(13):933-947.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Suzdal’tseva YG, Burunova VV, Petrakova NV, Vakhrushev IV, Yarygin KN, Yarygin VN. Comparatine analysis of cytophenotypes of cells of mesenchymal lineage isolated from human tissues. Bull. Exp. Biol. Med. 2007;143(1):147-154.

    Article  PubMed  Google Scholar 

  14. Suzdal’tseva YG, Burunova VV, Vakhrushev IV, Yarygin VN, Yarygin KN. Capability of human mesenchymal cells isolated from different sources to differentiation into tissues of mesodermal origin. Bull. Exp. Biol. Med. 2007;143(1):114-121.

    Article  PubMed  Google Scholar 

  15. von Kummer R, Broderick JP, Campbell BC, Demchuk A, Goyal M, Hill MD, Treurniet KM, Majoie CB, Marquering HA, Mazya MV, San Román L, Saver JL, Strbian D, Whiteley W, Hacke W. The Heidelberg bleeding classification: classification of bleeding events after ischemic stroke and reperfusion therapy. Stroke. 2015;46(10):2981-2986.

    Article  Google Scholar 

  16. Yarygin KN, Kholodenko IV, Konieva AA, Burunova VV, Tairova RT, Gubsky LV, Cheglakov IB, Pirogov YA, Yarygin VN, Skvortsova VI. Mechanisms of positive effects of transplantation of human placental mesenchymal stem cells on recovery of rats after experimental ischemic stroke. Bull. Exp. Biol. Med. 2009;148(6):862-868.

    Article  CAS  PubMed  Google Scholar 

  17. Yuan T, Liao W, Feng NH, Lou YL, Niu X, Zhang AJ, Wang Y, Deng ZF. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res. Ther. 2013;4(3):73. doi: https://doi.org/10.1186/scrt224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Namestnikova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 244-253, December, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkashova, E.A., Burunova, V.V., Bukharova, T.B. et al. Comparative Analysis of the Effects of Intravenous Administration of Placental Mesenchymal Stromal Cells and Neural Progenitor Cells Derived from Induced Pluripotent Cells on the Course of Acute Ischemic Stroke in Rats. Bull Exp Biol Med 166, 558–566 (2019). https://doi.org/10.1007/s10517-019-04392-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-019-04392-5

Key Words

Navigation