Skip to main content
Log in

Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Asymptomatic endophytic fungi are often regarded as potent biocontrol agents in plants, but the competitive interactions between endophytes and other microbes within the same host plant are poorly understood. We tested a hypothesis that as compared to asymptomatic endophytes, an aggressive pathogen inhabiting the same host is able to utilize carbon substrates more efficiently. Using phenotype microarray, we determined the carbon utilization profiles of the highly virulent Dutch elm disease (DED) pathogen Ophiostoma novo-ulmi, and four asymptomatic elm (Ulmus spp.) endophyte isolates that were selected based on their differential association to the DED-susceptibility pattern of the host elms. The competitive interactions between isolates were evaluated using a niche overlap index. In contrast to our hypothesis, the studied endophytes exhibited extensive niche overlap with the pathogen, suggesting that some endophyte strains might protect elms against DED-pathogen through competition for substrates and provide new tools for biocontrol of DED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahlholm J, Helander M, Elamo P, Saloniemi I, Neuvonen S, Hanhimäki S, Saikkonen K (2002) Micro-fungi and invertebrate herbivores on birch trees: fungal mediated plant-herbivore interactions or responses to host quality? Ecol Lett 5:648–655

    Article  Google Scholar 

  • Albrectsen BR, Björkén L, Varad A, Hagner Å, Wedin M, Karlsson J, Jansson S (2010) Endophytic fungi in European aspen (Populus tremula) leaves—diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28

    Article  Google Scholar 

  • Albrectsen BR, Albrectsen BR, Witzell J, Witzell J (2012) Disentangling functions of fungal endophytes in forest trees. In: Paz Silva A, Sol M (eds) Fungi: Types, environmental impact and role in disease. Nova Science Publishers, New York, pp 235–246

    Google Scholar 

  • Annis SL, Goodwin PH (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur J Plant Pathol 103:1–14

    Article  CAS  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Bernier L, Yang D, Ouellette GB, Dessureault M (1996) Assessment of Phaeotheca dimorphospora for biological control of the Dutch elm disease pathogens, Ophiostoma ulmi and O. novo-ulmi. Plant Pathol 45:609–617

    Article  Google Scholar 

  • Brasier CM (1991) Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia 115:151–161

    Article  Google Scholar 

  • Brasier CM, Webber JF (1987) Positive correlations between in vitro growth rate and pathogenesis in Ophiostoma ulmi. Plant Pathol 36:462–466

    Article  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Dahl AS (1934) Snowmold of turf grasses as caused by Fusarium nivale. Phytopathology 24(3):197–214

    CAS  Google Scholar 

  • Dvořák M, Palovčíková D, Jankovský L (2006) The occurrence of endophytic fungus Phomopsis oblonga on elms in the area of southern Bohemia. J For Sci 52:531–535

    Google Scholar 

  • Ernst M, Neubert K, Mendgen KW, Wirsel SGR (2011) Niche differentiation of two sympatric species of Microdochium colonizing the roots of common reed. BMC Microbiol 11:242–254

    Article  PubMed Central  PubMed  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microb 57:2351–2359

    CAS  Google Scholar 

  • Gaur R, Singh R, Gupta M, Gaur MK (2010) Aureobasidium pullulans, an economically important polymorphic yeast with special reference to pullulan. Afr J Biotechnol 9:7989–7997

    CAS  Google Scholar 

  • Glynn NC, Hare MC, Parry DW, Edwards SG (2005) Phylogenetic analysis of EF-1 alpha gene sequences from isolates of Microdochium nivale leads to elevation of varieties majus and nivale to species status. Mycol Res 109:872–880

    Article  CAS  PubMed  Google Scholar 

  • Haack SK, Garchow H, Klug MJ, Forney LJ (1995) Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microb 61:1458–1468

    CAS  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Article  Google Scholar 

  • Helander ML, Sieber T, Petrini O, Neuvonen S (1994) Ecology of pine needle endophytes: spatial variation and consequences of acid irrigation. Can J Bot 72:1108–1113

    Article  Google Scholar 

  • Hubbell SP (2001) Monographs in population biology, the unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hubbes M, Jeng RS (1981) Aggressiveness of Ceratocystis ulmi strains and induction of resistance in Ulmus americana. Eur J For Path 11:257–264

    Article  Google Scholar 

  • Kaur G, Padmaja V (2009) Relationships among activities of extracellular enzyme production and virulence against Helicoverpa armigera in Beauveria bassiana. J Basic Microb 49:264–274

    Article  CAS  Google Scholar 

  • Klepzig KD (1998) Competition between a biological control fungus, Ophiostoma piliferum, and symbionts of the southern pine beetle. Mycologia 90:69–75

    Article  Google Scholar 

  • Kulkarni RK, Nickerson KW (1981) Nutritional control of dimorphism in Ceratocystis ulmi. Exp Mycol 5:148–154

    Article  CAS  Google Scholar 

  • Lee HB, Magan N (1999) Environmental factors and nutritional utilization patterns affect niche overlap indices between Aspergillus ochraceus and other spoilage fungi. Lett Appl Microbiol 28:300–304

    Article  CAS  PubMed  Google Scholar 

  • Martín JA, Solla A, Domingues MR, Coimbra MA, Gil L (2008) Exogenous phenol increase resistance of Ulmus minor to Dutch elm disease through formation of suberin-like compounds on xylem tissues. Environ Exp Bot 64:97–104

    Article  Google Scholar 

  • Martín JA, Solla A, Esteban LG, de Palacios P, Gil L (2009) Bordered pit and ray morphology involvement in elm resistance to Ophiostoma novo-ulmi. Can J For Res 39:420–429

    Article  Google Scholar 

  • Martín JA, Fuentes-Utrilla P, Gil L, Witzell J (2010) Ecological factors behind the Dutch elm disease complex in Europe—a review. Ecol Bull 53:209–224

    Google Scholar 

  • Martín JA, Witzell J, Blumenstein K, Rozpedowska E, Helander M, Sieber TN, Gil L (2013) Resistance to Dutch elm disease reduces xylem endophytic fungi presence in elms (Ulmus spp.). PLoS ONE 8:e56987

    Article  PubMed Central  PubMed  Google Scholar 

  • Mejía LC, Rojas EI, Maynard Z, van Bael S, Arnold AE, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14

    Article  Google Scholar 

  • Meyer SE, Stewart TE, Clement S (2010) The quick and the deadly: growth vs virulence in a seed bank pathogen. New Phytol 187:209–216

    Article  PubMed  Google Scholar 

  • Mikkelson GM (2005) Niche-based vs. neutral models of ecological communities. Biol Phil 20:557–566

    Article  Google Scholar 

  • Neely D, Himelick EB (1963) Root graft transmission of Dutch elm disease in municipalities. Plant Dis Rep 47:83–85

    Google Scholar 

  • Newcombe G (2011) Endophytes in forest management: four challenges. In: Pirttilä AM, Frank AC (eds) Endophytes in forest trees: biology and applications. Springer, Dordrecht, pp 251–262

    Chapter  Google Scholar 

  • Pagán I, Alonso-Blanco C, García-Arenal F (2007) The relationship of within-host multiplication and virulence in a plant-virus system. PLoS ONE 2:e786

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rudinsky JA (1962) Ecology of Scolytidae. Annu Rev of Entomol 7:327–348

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Saikkonen K, Ahlholm J, Helander M, Poteri M, Tuominen J (2001) Experimental testing of rust fungus-mediated herbivory resistance in Betula pendula. Forest Pathol 31:321–329

    Article  Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    Article  CAS  PubMed  Google Scholar 

  • Santini A, Faccoli M (2015) Dutch elm disease and elm bark beetles: a century of association. iForest 8:126–134

    Article  Google Scholar 

  • Scheffer RJ, Voeten JGWF, Guries RP (2008) Biological control of Dutch elm disease. Plant Dis 92:192–200

    Article  Google Scholar 

  • Sieber T, Riesen TK, Müller E, Fried PM (1988) Endophytic fungi in four winter wheat cultivars (Triticum aestivum L.) differing in resistance against Stagonospora nodorum (Berk.) Cast. & Germ. = Septoria nodorum (Berk.) Berk. J Phytopath 122:289–306

    Article  Google Scholar 

  • Singh D, Smalley EB (1969) Nitrogenous and carbohydrate compounds in the xylem sap of Ulmaceae species varying in resistance to Dutch elm disease. Can J Bot 47:335–339

    Article  CAS  Google Scholar 

  • Slepecky RA, Starmer WT (2009) Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia 101:823–832

    Article  PubMed  Google Scholar 

  • Solheim H, Krokene P (1998) Growth and virulence of mountain pine beetle associated blue-stain fungi, Ophiostoma clavigerum and Ophiostoma montium. Can J Bot 76:561–566

    Google Scholar 

  • Solla A, Dacasa MC, Nasmith C, Hubbes M, Gil L (2008) Analysis of Spanish populations of Ophiostoma ulmi and O. novo-ulmi using phenotypic characteristics and RAPD markers. Plant Pathol 57:33–44

    CAS  Google Scholar 

  • Tellenbach C, Sieber TN (2012) Do colonization by dark septate endophytes and elevated temperature affect pathogenicity of oomycetes? FEMS Microbiol Ecol 82:157–168

    Article  CAS  PubMed  Google Scholar 

  • Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. P Natl Acad Sci USA 101:10854–10861

    Article  CAS  Google Scholar 

  • Tonukari NJ (2003) Enzymes and fungal virulence. J Appl Sci Environ Manag 7:5–8

    CAS  Google Scholar 

  • Webber J (1981) A natural biological control of Dutch elm disease. Nature 292:449–451

    Article  Google Scholar 

  • Webber JF, Brasier CM (1984) The transmission of Dutch elm disease: A study of the process involved. In: Anderson JM, Rayner ADM, Walton D (eds) Invertebrate-microbial interactions. Cambridge University Press, Cambridge, pp 271–306

    Google Scholar 

  • White JF, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446

    Article  CAS  PubMed  Google Scholar 

  • Wilson M, Lindow SE (1994) Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microb 60:4468–4477

    CAS  Google Scholar 

  • Witzell J, Martin JA (2008) Phenolic metabolites in the resistance of northern forest trees to pathogens—past experiences and future prospects. Can J For Res 38:2711–2727

    Article  Google Scholar 

  • Witzell J, Martín JA, Blumenstein K (2013) Ecological aspects of endophyte-based biocontrol of forest diseases. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer-Verlag, Heidelberg, pp 321–333

    Google Scholar 

  • Zalar P, Gostinčar C, de Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Research Council FORMAS (project 2008-1090); Stiftelsen Konsul Faxes Donation, Sweden (projects KF 23 and KF 29); Ministerio de Ciencia e Innovación, Spain, project AGL2009-09289; Ministerio de Economía y Competitividad, Spain (project CTQ2011-28503-C02-02); the Spanish elm breeding program (Ministerio de Agricultura, Alimentación y Medio Ambiente; Universidad Politécnica de Madrid); and the Joint Doctoral Program “Forest and Nature for Society”, FONASO. The English language was edited by Sees editing Ltd, North Somerset, UK. The work was carried out as a part of research aiming to elucidate the role of endophytes in Dutch elm disease (DED) complex, initiated by Johanna Witzell and Juan Martín in 2008. An important goal of the research is to identify endophytes with biocontrol potential against DED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Blumenstein.

Additional information

Handling Editor: Choong-Min Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumenstein, K., Albrectsen, B.R., Martín, J.A. et al. Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease. BioControl 60, 655–667 (2015). https://doi.org/10.1007/s10526-015-9668-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-015-9668-1

Keywords

Navigation