Skip to main content
Log in

Improvement of a dry formulation of Pseudomonas protegens SN15-2 against Ralstonia solanacearum by combination of hyperosmotic cultivation with fluidized-bed drying

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The application value of Pseudomonas protegens in agriculture has been widely studied, but the manufacturing processes used to produce P. protegens limits its usefulness as a biological control agent because of its poor shelf life due to low stress resistance during processing. We combined hyperosmotic cultivation and fluidized-bed drying to prepare much more stable P. protegens preparations. During drying and cryogenic storage, the viability of hyperosmotic cells was significantly improved compared to that of cells prepared by previous methods. Addition of skim milk provided an excellent protective effect for both hyperosmotic and standard cells. In two field trials, when the concentration of the P. protegens preparation was 0.333% w/v, the biocontrol efficacy against tomato bacterial wilt was more than 80%, which was significantly higher than that of the control provided by the antibiotics zhongshengmycin and streptomycin sulfate. The results show that P. protegens products can be successfully prepared by combination of hyperosmotic cultivation and fluidized-bed drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barbosa J, Borges S, Teixeira P (2015) Influence of sub-lethal stresses on the survival of lactic acid bacteria after spray-drying in orange juice. Food Microbiol 52:77–83

    Article  CAS  PubMed  Google Scholar 

  • Bonaterra A, Badosa E, Cabrefiga J, Francés J, Montesinos E (2012) Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. Trees 26:215–226

    Article  CAS  PubMed  Google Scholar 

  • Bonaterra A, Cabrefiga J, Camps J, Montesinos E (2007) Increasing survival and efficacy of a bacterial biocontrol agent of fire blight of rosaceous plants by means of osmoadaptation. FEMS Microbiol Ecol 61:185–195

    Article  CAS  PubMed  Google Scholar 

  • Bustos P, Borquez R (2013) Influence of osmotic stress and encapsulating materials on the stability of autochthonous Lactobacillus plantarum after spray drying. Dry Technol 31:57–66

    Article  CAS  Google Scholar 

  • Cabrefiga J, Frances J, Montesinos E, Bonaterra A (2011) Improvement of fitness and efficacy of a fire blight biocontrol agent via nutritional enhancement combined with osmoadaptation. Appl Environ Microbiol 77:3174–3181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrefiga J, Frances J, Montesinos E, Bonaterra A (2014) Improvement of a dry formulation of Pseudomonas fluorescens EPS62e for fire blight disease biocontrol by combination of culture osmoadaptation with a freeze-drying lyoprotectant. J Appl Microbiol 117:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Chavez BE, Ledeboer AM (2007) Drying of probiotics: optimization of formulation and process to enhance storage survival. Dry Technol 25:1193–1201

    Article  CAS  Google Scholar 

  • Commare RR, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R (2002) Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaffolder insect in rice. Crop Prot 21:671–677

    Article  Google Scholar 

  • Dinesh R, Anandaraj M, Kumar A, Bini YK, Subila KP, Aravind R (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol Res 173:34–43

    Article  PubMed  Google Scholar 

  • Ferrando V, Quiberoni A, Reinheimer J, Suarez V (2016) Functional properties of Lactobacillus plantarum strains: a study in vitro of heat stress influence. Food Microbiol 54:154–161

    Article  CAS  Google Scholar 

  • Francés J, Bonaterra A, Moreno MC, Cabrefiga J, Badosa E, Montesinos E (2006) Pathogen aggressiveness and postharvest biocontrol efficiency in Pantoea agglomerans. Postharvest Biol Technol 39:299–307

    Article  Google Scholar 

  • Frapolli M, Moenne-Loccoz Y, Meyer J, Defago G (2008) A new DGGE protocol targeting 2,4-diacetylphloroglucinol biosynthetic gene phlD from phylogenetically contrasted biocontrol pseudomonads for assessment of disease-suppressive soils. FEMS Microbiol Ecol 64:468–481

    Article  CAS  PubMed  Google Scholar 

  • Gardiner GE, O’Sullivan E, Kelly J, Auty MAE, Fitzgerald GF, Collins JK, Ross RP, Stanton C (2000) Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol 66:2605–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40:1107–1121

    Article  CAS  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prevost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31:211–226

    Article  CAS  PubMed  Google Scholar 

  • Kempe J, Sequeira L (1983) Biological control of bacterial wilt of potatoes: attempts to induce resistance by treating tubes with bacteria. Plant Dis 67:499–501

    Article  Google Scholar 

  • Kim WS, Perl L, Park JH, Tandianus JE, Dunn NW (2001) Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr Microbiol 43:346–350

    Article  CAS  PubMed  Google Scholar 

  • Lopes CA, Rossato M (2018) History and status of selected hosts of the Ralstonia solanacearum species complex causing bacterial wilt in Brazil. Front Microbiol 9:1228–1233

    Article  PubMed  PubMed Central  Google Scholar 

  • Lou HB, Wang XB, Chen J, Wang BZ, Wang W (2018) Transcriptomic response of Ralstonia solanacearum to antimicrobial Pseudomonas fluorescens SN15-2 metabolites. Can J Microbiol 64:816–825

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Wang XB, Cheng J, Nie X, Yu XX, Zhao YT, Wang W (2015) Microencapsulation of Bacillus subtilis B99-2 and its biocontrol efficiency against Rhizoctonia solani in tomato. Biol Control 90:34–41

    Article  Google Scholar 

  • Ma Y, Wang Q, Gao X, Zhang Y (2017) Biosynthesis and uptake of glycine betaine as cold-stress response to low temperature in fish pathogen Vibrio anguillarum. J Microbiol 55:44–55

    Article  CAS  PubMed  Google Scholar 

  • Mikiciński A, Sobiczewski P, Pulawska J, Maciorowski R (2016) Control of fire blight (Erwinia amylovora) by a novel strain 49M of Pseudomonas graminisfrom the phyllosphere of apple (Malus spp.). Eur J Plant Pathol 145:265–276

    Article  Google Scholar 

  • Mukhopadhyay A, He Z, Alm EJ, Arkin AP, Baidoo EE, Borglin SC, Chen W, Hazen TC, He Q, Holman H-Y, Huang K, Huang R, Joyner DC, Katz N, Keller M, Oeller P, Redding A, Sun J, Wall J, Wei J, Yang Z, Yen H-C, Zhou J, Keasling JD (2006) Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J Bacteriol 188:4068–4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nag A, Das S (2013) Improving ambient temperature stability of probiotics with stress adaptation and fluidized bed drying. J Funct Foods 5:170–177

    Article  CAS  Google Scholar 

  • Nunes GL, Etchepare MD, Cichoski AJ, Zepka LQ, Lopes EJ, Barin JS, Flores EMD, da Silva CD, de Menezes CR (2018) Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT Food Sci Technol 89:128–133

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer J-M, Defago G, Sutra L, Moenne-Loccoz Y (2011) Pseudomonas protegens sp nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34:180–188

    Article  CAS  PubMed  Google Scholar 

  • Rathore S, Desai PM, Liew CV, Chan LW, Lieng PWS (2013) Microencapsulation of microbial cells. J Food Eng 116:369–381

    Article  CAS  Google Scholar 

  • Santivarangkna C, Kulozik U, Foerst P (2007) Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Prog 23:302–315

    Article  CAS  PubMed  Google Scholar 

  • Savini M, Cecchini C, Verdenelli MC, Silvi S, Orpianesi C, Cresci A (2010) Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents. Nutrients 2:330–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoebitz M, Lopez MD, Roldan A (2013) Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review. Agron Sustain Dev 33:751–765

    Article  CAS  Google Scholar 

  • Senthil N, Raguchander T, Viswanathan R, Samiyappan R (2003) Talc formulated fluorescent pseudomonads for sugarcane red rot suppression and enhanced yield under field conditions. Sugar Tech 5:37–43

    Article  CAS  Google Scholar 

  • Stefanello RF, Nabeshima EH, Iamanaka BT, Ludwig A, Fries LLM, Bernardi AO, Copetti MV (2019) Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents. Food Res Int 115:90–94

    Article  CAS  PubMed  Google Scholar 

  • Stephan D, Da Silva APM, Bisutti IL (2016) Optimization of a freeze-drying process for the biocontrol agent Pseudomonas spp. and its influence on viability, storability and efficacy. Biol Control 94:74–81

    Article  Google Scholar 

  • Stummer S, Toegel S, Rabenreither MC, Unger FM, Wirth M, Viernstein H, Salar-Behzadi S (2012) Fluidized-bed drying as a feasible method for dehydration of Enterococcus faecium M74. J Food Eng 111:156–165

    Article  Google Scholar 

  • Sunny-Roberts EO, Knorr D (2007) Physiological analysis of lactobacillus rhamnosus VTT E-97800: Adaptive response to osmotic stress induced by trehalose. Br Food J 109:735–748

    Article  Google Scholar 

  • Wang B-L, Shi Y-X, Ma Y, Liu X-H, Li Y-H, Song H-B, Li B-J, Li Z-M (2010) Synthesis and biological activity of some novel trifluoromethyl-substituted 1,2,4-triazole and bis(1,2,4-triazole) mannich bases containing piperazine rings. J Agric Food Chem 58:5515–5522

    Article  CAS  PubMed  Google Scholar 

  • Wang BL, Shi YX, Zhang SJ, Ma Y, Wang HX, Zhang LY, Wei W, Liu XH, Li YH, Li ZM, Li BJ (2016) Syntheses, biological activities and SAR studies of novel carboxamide compounds containing piperazine and arylsulfonyl moieties. Eur J Med Chem 117:167–178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Key Research and Development Program of China (Nos. 2017YFD0200400; 2017YFD0201100) and the Science and Technology Commission of Shanghai Municipality, China (No. 18391902500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Fouad Daayf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Tang, D. & Wang, W. Improvement of a dry formulation of Pseudomonas protegens SN15-2 against Ralstonia solanacearum by combination of hyperosmotic cultivation with fluidized-bed drying. BioControl 65, 751–761 (2020). https://doi.org/10.1007/s10526-020-10042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-020-10042-x

Keywords

Navigation