Skip to main content
Log in

Fungal endophytes-induced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo biloba

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Treatment of suspension cells of Ginkgo biloba with fungal endophytes resulted in accumulation of flavonoids, increased abscisic acid (ABA) production and activation of phenylalanine ammonia-lyase (PAL). Fluridone, an inhibitor of ABA biosynthesis, was effective in inhibiting fungal endophytes-induced ABA biosynthesis, increase of PAL activity and flavonoids accumulation. Moreover, exogenous application of ABA enhanced PAL activity and increased accumulation of flavonoids in G. biloba cells with or without fungal endophytes elicitor. These finding suggest a causal relationship between ABA release and both PAL activity and flavonoid accumulation under fungal endophytes treatment and that ABA is involved in fungal endophytes-induced flavonoids accumulation in this plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adie BA, Pérez-Pérez J, Pérez-Pérez MM et al (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    Article  CAS  PubMed  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant Microbe Interact 21:709–719

    Article  CAS  PubMed  Google Scholar 

  • Bartels PG, Watson CW (1978) Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci 26:198–203

    CAS  Google Scholar 

  • Cao YH, Chu QC, Fang YZ et al (2002) Analysis of flavonoids in Ginkgo biloba L. and its phytopharmaceuticals by capillary electrophoresis with electrochemical detection. Anal Bioanal Chem 374:294–299

    Article  CAS  PubMed  Google Scholar 

  • Clinton CS, Erik BGF, Angela H et al (1998) ‘Hicksii’ yews as a sustainable source of anticancer compounds. http://www.cropinfo.net/AnnualReports/1997/yew.alt.html

  • de Torres-Zabala M, Truman W, Bennett MH et al (2007) Pseudomonassyringae pv. tomato hijacks the Arabidopsis abscisic acid signaling pathway to cause disease. EMBO J 26:1434–1443

    Article  PubMed  CAS  Google Scholar 

  • Dörnenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microbiol Technol 17:674–684

    Article  Google Scholar 

  • Duval I, Brochu V, Simard M et al (2005) Thaxtomin A induces programmed cell death in Arabidopsis thaliana suspension-cultured cells. Planta 222:820–831

    Article  CAS  PubMed  Google Scholar 

  • Errakhi R, Dauphin A, Meimoun P et al (2008) An early Ca2+ influx is a prerequisite to thaxtomin A-induced cell death in Arabidopsis thaliana cells. J Exp Bot 59:4259–4270

    Article  CAS  PubMed  Google Scholar 

  • Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42:360–368

    Article  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl):15–45

    Google Scholar 

  • Fong F, Schiff JA (1979) Blue-light-induced absorbance changes associated with carotenoids in Euglena. Planta 146:119–127

    Article  CAS  Google Scholar 

  • Guimarães RL, Stotz HU (2004) Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 136:3703–3711

    Article  PubMed  CAS  Google Scholar 

  • Hao GP, Zhang XH, Wang YQ et al (2009a) Nucleotide variation in NCED3 Region of Arabidopsis thaliana and its association study with abscisic acid content under drought stress. J Integr Plant Biol 51:175–183

    Article  CAS  PubMed  Google Scholar 

  • Hao GP, Du XH, Zhao FX et al (2009b) Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell Tissue Organ Cult 97:175–185

    Article  CAS  Google Scholar 

  • Huijser C, Kortstee A, Pego J et al (2000) The Arabidopsis sucrose uncoupled-6 gene is identical to abscisic acid insensitive-4: involvement of abscisic acid in sugar responses. Plant J 23:577–585

    Article  CAS  PubMed  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM et al (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  CAS  PubMed  Google Scholar 

  • Jensen AB, Busk PK, Figueras M et al (1996) Drought signal transduction in plants. Plant Growth Regul 20:105–110

    Article  CAS  Google Scholar 

  • Jones DH (1984) Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development. Phytochemistry 23:1349–1359

    Article  CAS  Google Scholar 

  • Li YC, Tao WY (2009) Paclitaxel-producing fungal endophyte stimulates the accumulation of taxoids in suspension cultures of Taxus cuspidate. Sci Hortic 121:97–102

    Article  CAS  Google Scholar 

  • Luo J, Liu L, Wu CD (2001) Enhancement of paclitaxel production by abscisic acid in cell suspension cultures of Taxus chinensis. Biotechnol Lett 23:1345–1348

    Article  CAS  Google Scholar 

  • Machuka J, Bashiardes S, Ruben E et al (1999) Sequence analysis of expressed sequence tags from an ABA-treated cDNA library identifies stress response genes in the moss Physcomitrella patens. Plant Cell Physiol 40:378–387

    CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  • McCarty DR, Carson CB, Stinard PS et al (1989) Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1:523–532

    Article  CAS  PubMed  Google Scholar 

  • Melotto M, Underwood W, Koczan J et al (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  PubMed  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469

    Article  CAS  Google Scholar 

  • Nagira Y, Ikegami K, Koshiba T et al (2006) Effect of ABA upon anthocyanin synthesis in regenerated torenia shoots. J Plant Res 119(2):137–144

    Article  CAS  PubMed  Google Scholar 

  • Paek NC, Lee B-M, BVai DG et al (1997) Regulatory roles pf abscisic acid for anthocyanin synthesis in maize kernels. Maydica 42:385–391

    Google Scholar 

  • Pellinen RI, Korhonen MS, Tauriainen AA, Palva ET, Kangasjärvi J (2002) Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiol 130:549–560

    Article  CAS  PubMed  Google Scholar 

  • Pirie A, Mullins M (1976) Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid. Plant Physiol 58:468–472

    Article  CAS  PubMed  Google Scholar 

  • Quatrano RS, Bartels D, Ho TD et al (1997) New insight into ABA-mediated processes. Plant Cell 9:470–475

    Article  CAS  Google Scholar 

  • Scheel D (1998) Resistance response physiology and signal transduction. Curr Opin Plant Biol 1:305–310

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Torczynski R, Bollon A (1997) Acremonium sp.—a leucinostatin A producing endophyte of European yew (Taxus baccata). Plant Sci 128:97–108

    Article  CAS  Google Scholar 

  • Sun DY, Yin ZJ, Wu SJ et al (2007) Effects of abscisic acid on the secondary metabolism of cultured Onosma paniculatum cells. Russ J Plant Physiol 54:530–535

    Article  CAS  Google Scholar 

  • Ton J, Mauch-Mani B (2004) Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38:119–130

    Article  CAS  PubMed  Google Scholar 

  • Van Beek TA (2002) Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A 967:21–55

    Article  PubMed  Google Scholar 

  • Walton DC, Sondheimer E (1968) Effects of abscisin II on phenylalanine ammonia-lyase activity in excised bean axes. Plant Physiol 43:467–469

    Article  CAS  PubMed  Google Scholar 

  • Wilson D (1993) Fungal endophytes: out of sight but should not be out of mind. Oikos 68:379–384

    Article  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):165–183

    Google Scholar 

  • Yoshiokal T, Endo T, Satoh S (1998) Restoration of seed germination at supraoptimal temperatures by fluridone, an inhibitor of abscisic acid biosynthesis. Plant Cell Physiol 39:307–312

    Google Scholar 

  • Yukimune Y, Tabata H, Higashi Y et al (1996) Methyl jasmonate-induced over-production of paclitaxel and baccatin III in taxus cell suspension cultures. Nat Biotechnol 14:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart J, Creelman R (1988) Metabolism and physiology of abscisic acid. Ann Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

  • Zhang CH, Mei XG, Liu L (2000) Enhanced paclitaxel production induced by the combination of elicitors in cell suspension cultures of Taxus chinensis. Biotechnol Lett 22:1561–1564

    Article  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the research fund for the doctoral degree scholars of Taishan Medical University (No. 2005-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangping Hao.

Additional information

Gangping Hao and Xihua Du contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, G., Du, X., Zhao, F. et al. Fungal endophytes-induced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo biloba . Biotechnol Lett 32, 305–314 (2010). https://doi.org/10.1007/s10529-009-0139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-0139-6

Keywords

Navigation