Skip to main content
Log in

Rapid induction of the triterpenoid pathway in Arabidopsis thaliana mesophyll protoplasts

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Purpose of work: The purpose of this study was to determine if Arabidopsis protoplast transfection could be scaled up, from the commonly used cell-based studies, to be used in triterpenoid production assays as an in planta alternative/complement to other expression systems.

Enzyme activities are often identified using heterologous expression systems such as yeast cells. These systems, however, may be incompatible for expressing enzymes involved in specialized (secondary) metabolism. Previous reports with long-term in planta expression systems show that the activity of the triterpenoid pathway can be enhanced by expressing enzymes catalyzing initial steps in the pathway. Here we show that triterpenoid production can also be enhanced in Arabidopsis mesophyll protoplasts after transfection. This system is designed to quantify changes in productivity of a plant metabolic pathway within 48 h and, as proof of concept, we show a significantly increased production of a triterpenoid by transiently expressing squalene synthase 1 (SQS1) from 0.5 pg/protoplast in mock-transfected protoplasts to 2.7 pg/protoplast in constitutively expressing SQS1 protoplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Buschhaus C, Jetter R (2012) Composition and physiological function of the wax layers coating Arabidopsis leaves: β-amyrin negatively affects the intracuticular water barrier. Plant Physiol 160:1120–1129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Busquets A, Keim V, Closa M et al (2008) Arabidopsis thaliana contains a single gene encoding squalene synthase. Plant Mol Biol 67:25–36

    Article  CAS  PubMed  Google Scholar 

  • Greer S, Wen M, Bird D et al (2007) The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol 145:653–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kribii R, Arró M, Arco A et al (1997) Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase. Eur J Biochem 249:61–69

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Jeong JH, Seo JW et al (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984

    Article  CAS  PubMed  Google Scholar 

  • Marks MD, Betancur L, Gilding E et al (2008) A new method for isolating large quantities of Arabidopsis trichomes for transcriptome, cell wall and other types of analyses. Plant J 56:483–492

    Article  CAS  PubMed  Google Scholar 

  • Mirjalili M, Moyano E, Bonfill M et al (2011) Overexpression of the Arabidopsis thaliana squalene synthase gene in Withania coagulans hairy root cultures. Biol Plantarum 55:2373–2393

    Article  Google Scholar 

  • Nuringtyas TR, Choi YH, Verpoorte R et al (2012) Differential tissue distribution of metabolites in Jacobaea vulgaris, Jacobaea aquatica and their crosses. Phytochemistry 78:89–97

    Article  CAS  PubMed  Google Scholar 

  • Rasbery JM, Shan H, LeClair RJ et al (2007) Arabidopsis thaliana squalene epoxidase 1 is essential for root and seed development. J Biol Chem 282:17002–17013

    Article  CAS  PubMed  Google Scholar 

  • Rontein D, Onillon S, Herbette G et al (2008) CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4 (5), 11 (12)-diene into the cyclic ether 5 (12)-oxa-3 (11)-cyclotaxane. J Biol Chem 283:6067–6075

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711

    Article  CAS  PubMed  Google Scholar 

  • Seo JW, Jeong JH, Shin CG et al (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66:869–877

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Wang S, Hagen G, Guilfoyle TJ (2006) Transfection assays with protoplasts containing integrated reporter genes. Methods Mol Biol 323:237

    PubMed  Google Scholar 

  • Wang E, Gan S, Wagner GJ (2002) Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L. J Exp Bot 53:1891–1897

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Chang Y, Guo J, Chen JG (2007) Arabidopsis ovate family protein 1 is a transcriptional repressor that suppresses cell elongation. Plant J 50:858–872

    Article  CAS  PubMed  Google Scholar 

  • Yerger EH, Grazzini RA, Hesk D et al (1992) A rapid method for isolating glandular trichomes. Plant Physiol 99:1–7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NSERC Discovery Grants (nos. 298264-09 and 262461-08), the Canada Research Chairs program, and Canada Foundation for Innovation Leaders Opportunity grants to G.O.W and R. J. We thank Christopher Buschhaus for providing 35Spro::LUP4 seeds and Luke Busta for technical assistance with GC and GC–MS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Wasteneys.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, E.E., Jetter, R. & Wasteneys, G. Rapid induction of the triterpenoid pathway in Arabidopsis thaliana mesophyll protoplasts. Biotechnol Lett 36, 855–858 (2014). https://doi.org/10.1007/s10529-013-1427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-013-1427-8

Keywords

Navigation