Skip to main content
Log in

Stoichiometric impact of calcium carbonate deposition on nitrogen and phosphorus supplies in three montane streams

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The absolute concentrations of nitrogen (N) and phosphorus (P) and their relative availabilities (N:P stoichiometry) can influence numerous ecological processes. In streams, N:P stoichiometry is influenced by different hydrologic and biogeochemical processes that also affect the downstream transport of these nutrients to receiving waters. Calcium carbonate (CaCO3) deposition, a widespread geochemical process in alkaline streams and other aquatic ecosystems, can lower phosphate concentrations and, potentially, decrease P availability relative to N availability. We evaluated the effects of CaCO3 deposition on stream water stoichiometry using a 3-year dataset of stream physicochemistry and several metrics of CaCO3 deposition across three streams in the Huachuca Mountains of southern Arizona, USA. CaCO3 deposition rates varied across and within streams, with benthic coverage of travertine as high as 70 % and deposition rates up to 8.3 μg Ca2+ L−1 m−1. Redundancy analysis revealed a strong, negative correlation between stream water phosphate concentrations and CaCO3 deposition rates, a relationship that also extended to total P concentrations, and a strong, positive correlation between inorganic N concentrations and CaCO3 deposition rates. Furthermore, we found a significant positive relationship between CaCO3 deposition rates and N:P ratios. These results support the role of coprecipitation of phosphate with CaCO3 deposition in reducing P supply. They also suggest that reduced concentrations of P in the water column may reduce biological N uptake, amplifying the stoichiometric signal of CaCO3 deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alexander RB, Boyer EW, Smith RA, Schwarz GE, Moore RB (2007) The role of headwater streams in downstream water quality. J Am Water Resour Assoc 43:41–59

    Article  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater. APHA-AWWA-WEF, Washington, DC

    Google Scholar 

  • Arvin E, Jenkins D (1985) Biological removal of phosphorus from wastewater. Crit Rev Environ Sci Technol 15:25–64

    Google Scholar 

  • Aspila KI, Agemian H, Chau ASY (1976) A semi-automatic method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187–197

    Article  Google Scholar 

  • Auqué L, Arenas C, Osácar C, Pardo G, Sancho C, Vázquez-Urbez M (2013) Tufa sedimentation in changing hydrological conditions: the River Mesa (Spain). Geol Acta 11:85–102

    Google Scholar 

  • Austnes K, Evans C, Eliot-Laize C, Naden P, Old G (2010) Effects of storm events on mobilisation and in-stream processing of dissolved organic matter (DOM) in a Welsh peatland catchment. Biogeochemistry 99:157–173. doi:10.1007/s10533-009-9399-4

    Article  Google Scholar 

  • Avilés A, Rodero J, Amores V, de Vicente I, Rodríguez MI, Niell FX (2006) Factors controlling phosphorus speciation in a Mediterranean Basin (River Guadalfeo, Spain). J Hydrol 331:396–408. doi:10.1016/j.jhydrol.2006.05.024

    Article  Google Scholar 

  • Bernal S, Lupon A, Ribot M, Sabater F, Martí E (2015) Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forest stream. Biogeosciences 12:1941–1954

    Article  Google Scholar 

  • Bissett A, de Beer D, Schoon R, Shiraishi F, Reimer A, Arp G (2008) Microbial mediation of stromatolite formation in karst-water creeks. Limnol Oceanogr 53:1159–1168

    Article  Google Scholar 

  • Borovec J, Sirová D, Mošnerová P, Rejmánková E, Vrba J (2010) Spatial and temporal changes in phosphorus partitioning within a freshwater cyanobacterial mat community. Biogeochemistry 101:323–333. doi:10.1007/s10533-010-9488-4

    Article  Google Scholar 

  • Boyer M, Wheeler B (1989) Vegetation patterns in spring-fed calcareous fens: calcite precipitation and constraints on fertility. J Ecol 77:597–609

    Article  Google Scholar 

  • Brown DE (ed) (1994) Biotic communities: southwestern United States and northwestern Mexico. University of Utah Press, Salt Lake City

    Google Scholar 

  • Carter CD, Marks JC (2007) Influences of travertine dam formation on leaf litter decomposition and algal accrual. Hydrobiologia 575:329–341

    Article  Google Scholar 

  • Casas J, Gessner M (1999) Leaf litter breakdown in a Mediterranean stream characterised by travertine precipitation. Freshw Biol 41:781–793

    Article  Google Scholar 

  • Casey H, Farr I (1982) The influence of within-stream disturbance on dissolved nutrient levels during spates. Hydrobiologia 91:447–462

    Article  Google Scholar 

  • Chave KE (1965) Carbonates: association with organic matter in surface seawater. Science 148:1723–1724

    Article  Google Scholar 

  • Chergui H, Pattee E (1990) The influence of season on the breakdown of submerged leaves. Arch Hydrobiol 120:1–12

    Google Scholar 

  • Cohen MJ, Kurz MJ, Heffernan JB, Martin JB, Douglas RL, Foster CR, Thomas RG (2013) Diel phosphorus variation and the stoichiometry of ecosystem metabolism in a large spring-fed river. Ecol Monogr 83:155–176

    Article  Google Scholar 

  • Dahm CN, Baker MA, Moore DI, Thibault JR (2003) Coupled biogeochemical and hydrological responses of streams and rivers to drought. Freshw Biol 48:1219–1231

    Article  Google Scholar 

  • Demars BO (2008) Whole-stream phosphorus cycling: testing methods to assess the effect of saturation of sorption capacity on nutrient uptake length measurements. Water Res 42:2507–2516. doi:10.1016/j.watres.2008.02.010

    Article  Google Scholar 

  • Dodds WK, Oakes RM (2008) Headwater influences on downstream water quality. Environ Manag 41:367–377

    Article  Google Scholar 

  • Dodds WK, Welch EB (2000) Establishing nutrient criteria in streams. J N Am Benthol Soc 19:186–196

    Article  Google Scholar 

  • Dorioz J, Pilleboue E, Ferhi A (1989) Phosphorus dynamics in watersheds: role of trapping processes in sediments [Dynamique du phosphore dans les bassins versants: importance des phenomenes de retention dans les sediments]. Water Res 23:147–158

    Article  Google Scholar 

  • Downing JA, McCauley E (1992) The nitrogen:phosphorus relationship in lakes. Limnol Oceanogr 37:936–945

    Article  Google Scholar 

  • Drysdale RN, Taylor MP, Ihlenfeld C (2002) Factors controlling the chemical evolution of travertine-depositing rivers of the Barkly karst, northern Australia. Hydrol Process 16:2941–2962

    Article  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438. doi:10.1016/j.tim.2005.07.008

    Article  Google Scholar 

  • Elser JJ et al (2005) Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshw Biol 50:1808–1825. doi:10.1111/j.1365-2427.2005.01451.x

    Article  Google Scholar 

  • Elser JJ et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi:10.1111/j.1461-0248.2007.01113.x

    Article  Google Scholar 

  • Ferreira V, Chauvet E (2011) Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia 167:279–291. doi:10.1007/s00442-011-1976-2

    Article  Google Scholar 

  • Fisher SG, Sponseller RA, Heffernan JB (2004) Horizons in stream biogeochemistry: flowpaths to progress. Ecology 85:2369–2379

    Article  Google Scholar 

  • Francoeur SN (2001) Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. J N Am Benthol Soc 20:358–368

    Article  Google Scholar 

  • Geisser S, Greenhouse SW (1958) An extension of box’s results on the use of the F distribution in multivariate analysis. Ann Math Stat 29:885–891

    Article  Google Scholar 

  • Grimm NB (1992) Biogeochemistry of nitrogen in Sonoran Desert streams. J Ariz Nev Acad Sci 26:139–155

    Google Scholar 

  • Grimm NB, Fisher SG (1986) Nitrogen limitation in a Sonoran Desert stream. J N Am Benthol Soc 5:2–15

    Article  Google Scholar 

  • Hagerthey SE, Bellinger BJ, Wheeler K, Gantar M, Gaiser E (2011) Everglades periphyton: a biogeochemical perspective. Crit Rev Environ Sci Technol 41:309–343. doi:10.1080/10643389.2010.531218

    Article  Google Scholar 

  • Hamilton SK, Bruesewitz DA, Horst GP, Weed DB, Sarnelle O (2009) Biogenic calcite–phosphorus precipitation as a negative feedback to lake eutrophication. Can J Fish Aquat Sci 66:343–350. doi:10.1139/f09-003

    Article  Google Scholar 

  • Herman JS, Lorah MM (1987) CO2 outgassing and calcite precipitation in Falling Spring Creek, Virginia, U.S.A. Chem Geol 62:251–262. doi:10.1016/0009-2541(87)90090-8

    Article  Google Scholar 

  • Hill AR (1996) Nitrate removal in stream riparian zones. J Environ Qual 25:743–755

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  Google Scholar 

  • House W (1990) The prediction of phosphate coprecipitation with calcite in freshwaters. Water Res 24:1017–1023

    Article  Google Scholar 

  • House WA (2003) Geochemical cycling of phosphorus in rivers. Appl Geochem 18:739–748

    Article  Google Scholar 

  • House WA, Denison FH (1997) Nutrient dynamics in a lowland stream impacted by sewage effluent: Great Ouse, England. Sci Total Environ 205:25–49

    Article  Google Scholar 

  • House WA, Donaldson L (1986) Adsorption and coprecipitation of phosphate on calcite. J Colloid Interface Sci 112:309–324

    Article  Google Scholar 

  • House WA, Casey H, Smith S (1986) Factors affecting the coprecipitation of inorganic phosphate with calcite in hardwaters—II. Water Res 20:923–927

    Article  Google Scholar 

  • Hu YB, Dieckmann GS, Wolf-Gladrow DA, Nehrke G (2014) Laboratory study on coprecipitation of phosphate with ikaite in sea ice. J Geophys Res Oceans 119:7007–7015

    Article  Google Scholar 

  • Jacobson RL, Langmuir D (1970) The chemical history of some spring waters in carbonate rocks. Groundwater 8:5–9

    Article  Google Scholar 

  • Jaeger K, Olden J (2012) Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers. River Res Appl 28:1843–1852

    Article  Google Scholar 

  • Jäger P, Röhrs J (1990) Phosphorfällung über Calciumcarbonat im eutrophen Wallersee (Salzburger Alpenvorland, Österreich). [Coprecipitation of phosphorus with calcite in the eutrophic Wallersee (Alpine Foreland of Salzburg, Austria)]. Int Rev gesamten Hydrobiol Hydrogr 75:153–173

    Article  Google Scholar 

  • Jarvie H et al (2002) Phosphorus uptake into algal biofilms in a lowland chalk river. Sci Total Environ 282:353–373

    Article  Google Scholar 

  • Jarvie HP, Jürgens MD, Williams RJ, Neal C, Davies JJ, Barrett C, White J (2005) Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: the Hampshire Avon and Herefordshire Wye. J Hydrol 304:51–74

    Article  Google Scholar 

  • Jarvie HP, Neal C, Withers PJ (2006) Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus? Sci Total Environ 360:246–253. doi:10.1016/j.scitotenv.2005.08.038

    Article  Google Scholar 

  • Jenkins D, Ferguson JF, Menar AB (1971) Chemical processes for phosphate removal. Water Res 5:369–389

    Article  Google Scholar 

  • Kleiner J (1988) Coprecipitation of phosphate with calcite in lake water: a laboratory experiment modelling phosphorus removal with calcite in Lake Constance. Water Res 22:1259–1265

    Article  Google Scholar 

  • Liu Z, Sun H, Baoying L, Xiangling L, Wenbing Y, Cheng Z (2010) Wet–dry seasonal variations of hydrochemistry and carbonate precipitation rates in a travertine-depositing canal at Baishuitai, Yunnan, SW China: implications for the formation of biannual laminae in travertine and for climatic reconstruction. Chem Geol 273:258–266. doi:10.1016/j.chemgeo.2010.02.027

    Article  Google Scholar 

  • Lorah MM, Herman JS (1988) The chemical evolution of a travertine-depositing stream: geochemical processes and mass transfer reactions. Water Resour Res 24:1541–1552

    Article  Google Scholar 

  • Lu G, Zheng C, Donahoe R, Berry Lyons W (2000) Controlling processes in a CaCO3 precipitating stream in Huanglong Natural Scenic District, Sichuan, China. J Hydrol 230:34–54

    Article  Google Scholar 

  • Malusa J, Overby ST, Parnell RA (2003) Potential for travertine formation. Appl Geochem 18:1081–1093. doi:10.1016/s0883-2927(02)00241-x

    Article  Google Scholar 

  • Marks JC, Parnell R, Carter C, Dinger EC, Haden GA (2006) Interactions between geomorphology and ecosystem processes in travertine streams: implications for decommissioning a dam on Fossil Creek, Arizona. Geomorphology 77:299–307. doi:10.1016/j.geomorph.2006.01.008

    Article  Google Scholar 

  • Martínez A, Pérez J, Molinero J, Sagarduy M, Pozo J (2014) Effects of flow scarcity on leaf-litter processing under oceanic climate conditions in calcareous streams. Sci Total Environ 503–504:251–257

    Google Scholar 

  • Mattsson T, Kortelainen P, Räike A, Lepistö A, Thomas DN (2015) Spatial and temporal variability of organic C and N concentrations and export from 30 boreal rivers induced by land use and climate. Sci Total Environ 508:145–154

    Article  Google Scholar 

  • McDiffett WF, Beidler AW, Dominick TF, McCrea KD (1989) Nutrient concentration–stream discharge relationships during storm events in a first-order stream. Hydrobiologia 179:97–102

    Article  Google Scholar 

  • McGarigal K, Cushman S, Stafford SG (2000) Multivariate statistics for wildlife and ecology research. Springer, New York

    Book  Google Scholar 

  • Merz-Preiß M, Riding R (1999) Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sediment Geol 126:103–124. doi:10.1016/S0037-0738(99)00035-4

    Article  Google Scholar 

  • Meyer JL, Likens GE (1979) Transport and transformation of phosphorus in a forest stream ecosystem. Ecology 60:1255–1269

    Article  Google Scholar 

  • Meyer JL et al (1988) Elemental dynamics in streams. J N Am Benthol Soc 7:410–432

    Article  Google Scholar 

  • Milisa M, Belancic A, Kepčija RMk, Sertic-Peric M, Ostojic A, Habdija I (2010) Calcite deposition in karst waters is promoted by leaf litter breakdown and vice versa. Ann Limnol 46:225–232

    Article  Google Scholar 

  • Mooshammer M et al (2012) Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology 93:770–782

    Article  Google Scholar 

  • Mulholland PJ (2004) The importance of in-stream uptake for regulating stream concentrations and outputs of N and P from a forested watershed: evidence from long-term chemistry records for Walker Branch Watershed. Biogeochemistry 70:403–426

    Article  Google Scholar 

  • Mulholland PJ, Hill WR (1997) Seasonal patterns in streamwater nutrient and dissolved organic carbon concentrations: separating catchment flow path and in-stream effects. Water Resour Res 33:1297–1306

    Article  Google Scholar 

  • Mulholland PJ, Webster JR (2010) Nutrient dynamics in streams and the role of J-NABS. J N Am Benthol Soc 29:100–117

    Article  Google Scholar 

  • Neal C (1999) The potential for phosphorus pollution remediation by calcite precipitation in UK freshwaters. Hydrol Earth Syst Sci 5:119–131

    Article  Google Scholar 

  • Noe GB, Childers DL, Jones RD (2001) Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique? Ecosystems 4:603–624

    Article  Google Scholar 

  • Oksanen J et al (2013) Vegan: community ecology package, R package version 2.1-10. http://vegan.r-forge.r-project.org/. Accessed 22 Aug 2014

  • Otsuki A, Wetzel RG (1972) Coprecipitation of phosphate with carbonates in a marl lake. Limnol Oceanogr 17:763–767

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) Description of input and examples for PHREEQC (version 3)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Techniques and Methods 6–A43, U.S. Geological Survey, 519 pp

  • Pentecost A (2005) Travertine. Springer, Berlin

    Google Scholar 

  • Peterson BJ et al (2001) Control of nitrogen export from watersheds by headwater streams. Science 292:86–90

    Article  Google Scholar 

  • Pinheiro J, Bates D, Debroy S, Sarkar D, Team RC (2014) nlme: linear and non-linear mixed effects models, R package version 3.1-117. http://CRAN.R-project.org/package=nlme. Acessed 22 Aug 2014

  • R Core Team (2014) R: a language and environment for statistical computing. R Core Team, Vienna

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    Google Scholar 

  • Ruff H, Maier G (2000) Calcium carbonate deposits reduce predation pressure on Gammarus fossarum from salamander larvae. Freshw Biol 43:99–105

    Article  Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2012) The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspect Plant Ecol Evol Syst 14:33–47

    Article  Google Scholar 

  • Schade JD et al (2011) The stoichiometry of nitrogen and phosphorus spiralling in heterotrophic and autotrophic streams. Freshw Biol 56:424–436. doi:10.1111/j.1365-2427.2010.02509.x

    Article  Google Scholar 

  • Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671

    Article  Google Scholar 

  • Solorzano L, Sharp JH (1980) Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnol Oceanogr 25:754–758

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Tabachnick BG, Fidell LS (2001) Using multivariate statistics, 5th edn. Allyn and Bacon, Inc., Needham Heights

    Google Scholar 

  • ter Braak CJ, Prentice IC, Caswell H (1988) A theory of gradient analysis. Adv Ecol Res 34:235–282

    Article  Google Scholar 

  • Triska FJ, Jackman AP, Duff JH, Avanzino RJ (1994) Ammonium sorption to channel and riparian sediments: a transient storage pool for dissolved inorganic nitrogen. Biogeochemistry 26:67–83

    Article  Google Scholar 

  • Withers P, Jarvie H (2008) Delivery and cycling of phosphorus in rivers: a review. Sci Total Environ 400:379–395

    Article  Google Scholar 

  • WRRC (2014) Monthly climate summary, Fort Huachuca, Arizona. Western Regional Climate Center. http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?az3120. Accessed 16 Nov 2014

Download references

Acknowledgments

The authors would like to thank Nicole Nevarez, Megan (Brundage) Freeman, Robin Greene, Chanelle Hope, Cathy Kochert, Roy Erickson, Krist Rouypirom, Joseph Rittenhouse, Elizabeth Gaige, and all other members of Traverteam for help with field and laboratory analyses. Thank you to Sheridan Stone (US Department of Defense, Fort Huachuca) and Brooke Gebow (The Nature Conservancy, Ramsey Canyon Nature Preserve) for logistical support. This work was supported in-kind by a Department of Defense Strategic Environment Research and Development Project (SERDP, RC-1726) and with funding to JRC from Science Foundation Arizona, the Achievement Rewards for College Scholars (ARCS) Program, the California Lake Management Society, and the ASU Graduate and Professional Student Association Graduate Research Support Program and to JJE from the US National Science Foundation (DEB-0950175) and the National Aeronautics and Space Administration (NASA) Astrobiology Program (NAI5-0018). This manuscript was much improved by feedback from Nancy Grimm, Michelle McCrackin, Daniel Childers, and three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica R. Corman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: James Sickman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corman, J.R., Moody, E.K. & Elser, J.J. Stoichiometric impact of calcium carbonate deposition on nitrogen and phosphorus supplies in three montane streams. Biogeochemistry 126, 285–300 (2015). https://doi.org/10.1007/s10533-015-0156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0156-6

Keywords

Navigation