Skip to main content
Log in

Contribution of arginase to manganese metabolism of Aspergillus niger

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Aspects of manganese metabolism during normal and acidogenic growth of Aspergillus niger were explored. Arginase from this fungus was a Mn[II]-enzyme. The contribution of the arginase protein towards A. niger manganese metabolism was investigated using arginase knockout (D-42) and arginase over-expressing (ΔXCA-29) strains of A. niger NCIM 565. The Mn[II] contents of various mycelial fractions were found in the order: D-42 strain < parent strain < ΔXCA-29 strain. While the soluble fraction forms 60 % of the total mycelial Mn[II] content, arginase accounted for a significant fraction of this soluble Mn[II] pool. Changes in the arginase levels affected the absolute mycelial Mn[II] content but not its distribution in the various mycelial fractions. The A. niger mycelia harvested from acidogenic growth media contain substantially less Mn[II] as compared to those from normal growth media. Nevertheless, acidogenic mycelia harbor considerable Mn[II] levels and a functional arginase. Altered levels of mycelial arginase protein did not significantly influence citric acid production. The relevance of arginase to cellular Mn[II] pool and homeostasis was evaluated and the results suggest that arginase regulation could occur via manganese availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ash DE (2004) Structure and function of arginases. J Nutr 134:2760S–2764S

    CAS  PubMed  Google Scholar 

  • Auling G (1994) Manganese: function and transport in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Marcel Dekker, New York, pp 215–236

    Google Scholar 

  • Benassi VM, Pasin TM, Facchini FD, Jorge JA, de Moraes Teixeira, MdeL Polizeli (2014) A novel glucoamylase activated by manganese and calcium produced in submerged fermentation by Aspergillus phoenicis. J Basic Microbiol 54:333–339

    Article  CAS  PubMed  Google Scholar 

  • Bleackley MR, Macgillivray RT (2011) Transition metal homeostasis: from yeast to human disease. Biometals 24:785–809

    Article  CAS  PubMed  Google Scholar 

  • Bowman BJ, Abreu S, Johl JK, Bowman EJ (2012) The pmr gene, encoding a Ca2+-ATPase, is required for calcium and manganese homeostasis and normal development of hyphae and conidia in Neurospora crassa. Eukaryot Cell 11:1362–1370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carvajal N, Acoria M, Rodriguez JP, Fernandez M, Martinez J (1982) Evidence for cooperative effects in human liver arginase. Biochim Biophys Acta 1760:146–148

    Article  Google Scholar 

  • Crowley JD, Traynor DA, Weatherburn DC (2000) Enzymes and proteins containing manganese: An overview. In: Sigel A, Sigel H (eds) Metal ions in biological systems. Marcel Dekker, New York, pp 209–277

    Google Scholar 

  • Dave K, Ahuja M, Jayashri TN, Sirola RB, Punekar NS (2012) A novel selectable marker based on Aspergillus niger arginase expression. Enzyme Microb Technol 51:53–58

    Article  CAS  PubMed  Google Scholar 

  • Davis RH (1986) Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisiae. Microbiol Rev 50:280–313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis RH (2010) Amino acids and polyamines: polyfunctional proteins, metabolic cycles and compartmentation. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM Press, Washington, DC, pp 339–358

    Chapter  Google Scholar 

  • Davis RH, Weiss RL, Bowman BJ (1978) Intracellular metabolite distribution as a factor in regulation in Neurospora. In: Microenvironments and metabolic compartmentation. Academic Press, New York, pp 197–207

  • Emiliani E, Bekes P (1964) Enzymatic oxalate decarboxylation in Aspergillus niger. Arch Biochem Biophys 105:488–493

    Article  CAS  PubMed  Google Scholar 

  • Foster AW, Osman D, Robinson NJ (2014) Metal preferences and metallation. J Biol Chem 289:28095–28103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gong G, Zheng Z, Liu H, Wang L, Diao J, Wang P, Zhao G (2014) Purification and characterization of a β-glucosidase from Aspergillus niger and its application in the hydrolysis of geniposide to genipin. J Microbiol Biotechnol 24:788–794

    CAS  PubMed  Google Scholar 

  • Gupta S, Sharma CB (1995) Citric acid fermentation by the mutant strain of Aspergillus niger resistant to manganese ions inhibition. Biotechnol Lett 17:269–274

    Article  CAS  Google Scholar 

  • Hockertz S, Schmid J, Auling G (1987) A specific transport system for manganese in the filamentous fungus Aspergillus niger. J Gen Microbiol 133:3513–3519

    CAS  Google Scholar 

  • Imlay JA (2014) The mismetallation of enzymes during oxidative stress. J Biol Chem 289:28121–28128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jalving R, Bron P, Kester HC, Visser J, Schaap PJ (2002) Cloning of a prolidase gene from Aspergillus nidulans and characterisation of its product. Mol Genet Genomics 267:218–222

    Article  CAS  PubMed  Google Scholar 

  • Jayashri TN, Anuradha R, Punekar NS (2009) Single-stranded megaprimer splicing through OE-PCR: construction of full-length Aspergillus niger arginase cDNA. Ind J Biochem Biophys 46:266–268

    CAS  Google Scholar 

  • Jernejc K, Legisa M (2002) The influence of metal ions on malic enzyme activity and lipid synthesis in Aspergillus niger. FEMS Microbiol Lett 217:185–190

    Article  CAS  PubMed  Google Scholar 

  • Kanayama N, Tohru S, Keiichi K (2002) Purification and characterization of an alkaline manganese peroxidase from Aspergillus terreus LD-1. J Biosci Bioeng 93:405–410

    Article  CAS  PubMed  Google Scholar 

  • Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol 61:189–196

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki L, Farres A, Aguirre J (1995) Aspergillus nidulans mutants affected in acetate metabolism isolated as lipid nonutilizers. Exp Mycol 19:81–85

    Article  CAS  PubMed  Google Scholar 

  • Komachi Y, Hatakeyama S, Motomatsu H, Futagami T, Kizjakina K, Sobrado P, Ekino K, Takegawa K, Goto M, Nomura Y, Oka T (2013) gfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus. Mol Microbiol 90:1054–1073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kosman DJ (1994) Transition metal ion uptake in yeasts and filamentous fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Marcel Dekker, New York, pp 1–38

    Google Scholar 

  • Kubicek CP, Rohr M (1986) Citric acid fermentation. CRC Crit Rev Biotechnol 3:331–373

    Article  CAS  Google Scholar 

  • Lapinskas PJ, Cunningham KW, Liu XF, Fink GR, Culotta VC (1995) Mutations in PMR1 suppress oxidative damage in yeast cells lacking superoxide dismutase. Mol Cell Biol 15:1382–1388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Legisa M, Kidric J (1989) Initiation of citric acid accumulation in the early stages of Aspergillus niger growth. Appl Microbiol Biotechnol 31:453–457

    Article  CAS  Google Scholar 

  • Lopez V, Alarcon R, Orellana MS, Enriquez P, Uribe E, Martinez J, Carvajal N (2005) Insights into the interaction of human arginase II with substrate and manganese ions by site-directed mutagenesis and kinetic studies. Alteration of substrate specificity by replacement of Asn149 with Asp. FEBS J 272:4540–4548

    Article  CAS  PubMed  Google Scholar 

  • Luk EE, Culotta VC (2001) Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J Biol Chem 276:47556–47562

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie DA, Guillemette T, Al-Sheikh H, Watson AJ, Jeenes DJ, Wongwathanarat P, Dunn-Coleman NS, van Peij N, Archer DB (2005) UPR-independent dithiothreitol stress-induced genes in Aspergillus niger. Mol Genet Genomics 274:410–418

    Article  CAS  PubMed  Google Scholar 

  • Maggini S, Stoecklin-Tschan FB, Morikofer-Zwez S, Walter P (1992) New kinetic parameters for rat liver arginase measured at near-physiological steady-state concentrations of arginine and Mn2+. Biochem J 283:653–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maller A, da Silva TM, Damasio AR, Hirata IY, Jorge JA, Terenzi HF, Polizeli ML (2013) Functional properties of a manganese-activated exo-polygalacturonase produced by a thermotolerant fungus Aspergillus niveus. Folia Microbiol (Praha) 58:615–621

    Article  CAS  Google Scholar 

  • McNaughton RL, Reddi AR, Clement MH, Sharma A, Barnese K, Rosenfeld L, Gralla EB, Valentine JS, Culotta VC, Hoffman BM (2010) Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proc Natl Acad Sci USA 107:15335–15339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendz GL, Holmes EM, Ferrero RL (1998) In situ characterization of Helicobacter pylori arginase. Biochim Biophys Acta 1388:465–477

    Article  CAS  PubMed  Google Scholar 

  • Netik A, Torres NV, Riol JM, Kubicek CP (1997) Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim Biophys Acta 1326:287–294

    Article  CAS  PubMed  Google Scholar 

  • Okorokov LA, Lichko LP, Kadomtseva VM, Kholodenko VP, Titovsky VT, Kulaev IS (1977) Energy-dependent transport of manganese into yeast cells and distribution of accumulated ions. Eur J Biochem 75:373–377

    Article  CAS  PubMed  Google Scholar 

  • Orellana MS, Lopez V, Uribe E, Fuentes M, Salas M, Carvajal N (2002) Insights into the interaction of human liver arginase with tightly and weakly bound manganese ions by chemical modification and site-directed mutagenesis studies. Arch Biochem Biophys 403:155–159

    Article  CAS  PubMed  Google Scholar 

  • Paidhungat M, Garrett S (1998) Cdc1 and the vacuole coordinately regulate Mn2+ homeostasis in the yeast Saccharomyces cerevisiae. Genetics 148:1787–1798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papagianni M, Wayman F, Mattey M (2005) Fate and role of ammonium ions during fermentation of citric acid by Aspergillus niger. Appl Environ Microbiol 71:7178–7186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinchai N, Juvvadi PR, Fortwendel JR, Perfect BZ, Rogg LE, Asfaw YG, Steinbach WJ (2010) The Aspergillus fumigatus P-type Golgi apparatus Ca2+/Mn2+ ATPase PmrA is involved in cation homeostasis and cell wall integrity but is not essential for pathogenesis. Eukaryot Cell 9:472–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Promper C, Schneider R, Weiss H (1993) The role of the proton-pumping and alternative respiratory chain NADH:ubiquinone oxidoreductases in overflow catabolism of Aspergillus niger. Eur J Biochem 216:223–230

    Article  CAS  PubMed  Google Scholar 

  • Punekar NS, Vaidyanathan CS, Rao NA (1985) Role of glutamine synthetase in citric acid fermentation by Aspergillus niger. J Biosci 7:269–287

    Article  CAS  Google Scholar 

  • Reddi AR, Jensen LT, Culotta VC (2009) Manganese homeostasis in Saccharomyces cerevisiae. Chem Rev 109:4722–4732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruijter GJ, van de Vondervoort PJ, Visser J (1999) Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology 145:2569–2576

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Gaidamakova EK, Matrosova VY, Bennett B, Daly MJ, Hoffman BM (2013) Responses of Mn2+ speciation in Deinococcus radiodurans and Escherichia coli to γ-radiation by advanced paramagnetic resonance methods. Proc Natl Acad Sci USA 110:5945–5950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siddiqui KS, Azhar MJ, Rashid MH, Ghuri M, Rajoka MI (1997) Purification and the effect of manganese ions on the activity of carboxymethylcellulases from Aspergillus niger and Cellulomonas biazotea. Folia Microbiol (Praha) 42:303–311

    Article  CAS  Google Scholar 

  • Slayman CW, Tatum EL (1964) Potassium transport in Neurospora. I. intracellular sodium and potassium concentrations, and cation requirements for growth. Biochim Biophys Acta 88:578–592

    CAS  PubMed  Google Scholar 

  • Sone T, Griffiths AJ (1999) The frost gene of Neurospora crassa is a homolog of yeast cdc1 and affects hyphal branching via manganese homeostasis. Fungal Genet Biol 28:227–237

    Article  CAS  PubMed  Google Scholar 

  • Sulochana CB, Lakshmanan M (1968) Aspergillus niger technique for the bioassay of manganese. J Gen Microbiol 50:285–293

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Xu G, Zhan H, Chen H, Sun Z, Tian B, Hua Y (2010) Identification and evaluation of the role of the manganese efflux protein in Deinococcus radiodurans. BMC Microbiol 10:319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tabares LC, Un S (2013) In situ determination of manganese[II] speciation in Deinococcus radiodurans by high magnetic field EPR: detection of high levels of Mn[II] bound to proteins. J Biol Chem 288:5050–5055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tatsuno K, Yamada-Okabe H, Takagi M, Arisawa M, Sudoh M (1997) Properties of yeast expressed Aspergillus nidulans chitin synthase B which is essential for hyphal growth. FEMS Microbiol Lett 149:279–284

    Article  CAS  PubMed  Google Scholar 

  • Tuzen M (2003) Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem J 74:289–297

    Article  CAS  Google Scholar 

  • Viator RJ, Rest RF, Hildebrandt E, McGee DJ (2008) Characterization of Bacillus anthracis arginase: effects of pH, temperature and cell viability on metal preferences. BMC Biochem 9:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu DB, Rohr M, Kubicek CP (1989) Aspergillus niger cyclic AMP levels are not influenced by manganese deficiency and do not correlate with citric acid accumulation. Appl Microbiol Biotechnol 32:124–128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Sophisticated Analysis and Instrumentation Facility (SAIF), Department of Earth Sciences, and Centre for Environmental Science and Engineering (CESE) at IIT Bombay for support in Mn[II] analyses. Dr. Neetu Singh performed early standardizations of A. niger growth inhibition by Mn[II]. The work was supported by a grant from Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE) and fellowship (to Sarita Keni) by Council of Scientific and Industrial Research (CSIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan S. Punekar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keni, S., Punekar, N.S. Contribution of arginase to manganese metabolism of Aspergillus niger . Biometals 29, 95–106 (2016). https://doi.org/10.1007/s10534-015-9900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9900-6

Keywords

Navigation