Skip to main content
Log in

Cadmium-dependent expression of a new metallothionein identified in Trichomonas vaginalis

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Metallothioneins (MTs) have been identified in a wide variety of organisms from bacteria to humans. The biological functions of these MTs have a key role in metalloregulatory metabolism and its expression is induced in response to different stimuli, particularly by divalent metal cations. Also, the action of MTs have been implicated in the survival of pathogens in presence of microbicidal concentration of divalent cations, which allows the establishment of the infection. Trichomonas vaginalis is a protozoan parasite that adapts to the microenvironment of the male urogenital tract, where cations such as zinc (Zn2+) and cadmium (Cd2+) are present. Nevertheless, the molecular mechanisms of metal tolerance and homeostasis is not yet dilucidated in this parasite. In this study, we have identified 4 potential MT-like sequences (tvmt´s) in T. vaginalis genome. Because tvmt-2, -3, and -4 corresponds to truncated partial genes, we characterized the trichomonad tvmt-1 gene. The bioinformatic analyses and the predicted protein (TvMT-1) show similar properties to the reported in other MTs. The expression patterns of tvmt-1 in the presence of several divalent cations (Fe2+, Mn2+, Zn2+ and Cd2+) were analyzed and we demonstrated that Cd2+ induce significantly their expression. By indirect immunofluorescence assays, we corroborated this positive regulation of TvMT-1 in the cytoplasm of parasites grown in the presence of Cd2+. The tvmt-1 promoter contains putative metal responsive elements, which are probably the responsible for the Cd2+-dependent expression of this gene. Our results suggest that tvmt-1 gene encode a metallothionein that may be responsible for the homeostatis and detoxification of Cd+2 in T. vaginalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MT:

Metallothioneins

TvMT:

Metallothionein of Trichomonas vaginalis

Zn2+ :

Zinc

Cd2+ :

Cadmium

Cu2+ :

Copper

MTF-1:

Metal transcription factor

MRE:

Metal response element

Fe2+ :

Iron

References

  • Andrews GK (2001) Cellular zinc sensors: MTF-1 regulation of gene expression. In: Maret W (ed) Zinc biochemistry, physiology, and homeostasis. Springer, Dordrecht, pp 37–51

    Google Scholar 

  • Atrian S, Capdevila M (2013) Metallothionein-protein interactions. Biomol Concepts 4:143–160

    CAS  PubMed  Google Scholar 

  • Baird SK, Kurz T, Brunk UT (2006) Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem J 394:275–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blindauer CA (2011) Bacterial metallothioneins: past, present, and questions for the future. J Biol Inorg Chem 16(7):1011

    CAS  PubMed  Google Scholar 

  • Boldrin F, Santovito G, Formigari A, Bisharyan Y, Cassidy-Hanley D, Clark TG, Piccinni E (2008) MTT2, a copper-inducible metallothionein gene from Tetrahymena thermophila. Comp Biochem Physiol Part C 147:232–240

    Google Scholar 

  • Bremner I, Beattie J (1990) Metallothionein and the trace minerals. Annu Rev Nutr 10:63–83

    CAS  PubMed  Google Scholar 

  • Carlton JM et al (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212

    PubMed  PubMed Central  Google Scholar 

  • Carpenè E, Andreani G, Isani G (2007) Metallothionein functions and structural characteristics. J Trace Elem Med Biol 21:35–39

    PubMed  Google Scholar 

  • Corrêa AS, Andrade LR, Soares MJ (2002) Elemental composition of acidocalcisomes of Trypanosoma cruzi bloodstream trypomastigote forms. Parasitol Res 88:875–880

    PubMed  Google Scholar 

  • Coyle P, Philcox J, Carey L, Rofe A (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    CAS  PubMed  Google Scholar 

  • Fernández-Martín K, Alvarez-Sánchez M, Arana-Argáez V, Alvarez-Sánchez L, Lara-Riegos J, Torres-Romero J (2017) Genome-wide identification, in silico characterization and expression analysis of ZIP-like genes from Trichomonas vaginalis in response to zinc and iron. Biometals 30:663–675

    PubMed  Google Scholar 

  • Figueroa-Angulo EE et al (2012) The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect 14:1411–1427

    CAS  PubMed  Google Scholar 

  • Francis MJ, Hastings GZ, Brown F, McDermed J, Lu YA, Tam JP (1991) Immunological evaluation of the multiple antigen peptide (MAP) system using the major immunogenic site of foot-and-mouth disease virus. Immunology 73:249–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224

    CAS  PubMed  Google Scholar 

  • Gui Z, Green AR, Kasrai M, Bancroft GM, Stillman MJ (1996) Sulfur K-edge EXAFS studies of cadmium-, zinc-, copper-, and silver-rabbit liver metallothioneins. Inorg Chem 35(22):6520–6529

    CAS  PubMed  Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    CAS  PubMed  Google Scholar 

  • Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13:2870–2875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huff J, Lunn RM, Waalkes MP, Tomatis L, Infante PF (2007) Cadmium-induced cancers in animals and in humans. Int J Occupational and Environmental Health 13:202–212

    CAS  Google Scholar 

  • Isani G, Carpenè E (2014) Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biomolecules 4:435–457

    PubMed  PubMed Central  Google Scholar 

  • Iuchi S (2001) Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58:625–635

    CAS  PubMed  Google Scholar 

  • Kimura T, Kambe T (2016) The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci 17:336

    PubMed  PubMed Central  Google Scholar 

  • Koizumi S, Gong P, Suzuki K, Murata M (2007) Cadmium-responsive element of the human heme oxygenase-1 gene mediates heat shock factor 1-dependent transcriptional activation. J Biol Chem 282(12):8715–8723

    CAS  PubMed  Google Scholar 

  • Krieger JN, Rein MF (1982) Zinc sensitivity of Trichomonas vaginalis: in vitro studies and clinical implications. J Infect Dis 146:341–345

    CAS  PubMed  Google Scholar 

  • Lachke SA, Srikantha T, Tsai LK, Daniels K, Soll DR (2000) Phenotypic switching in Candida glabrata involves phase-specific regulation of the Metallothionein gene MT-IIand the newly discovered hemolysin gene HLP. Infect Immun 68:884–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langmade SJ, Ravindra R, Daniels PJ, Andrews GK (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275:34803–34809

    CAS  PubMed  Google Scholar 

  • Leiva-Presa A, Capdevila M, Gonzalez-Duarte P (2004) Mercury (II) binding to metallothioneins: variables governing the formation and structural features of the mammalian Hg-MT species. Eur J Biochem 271(23–24):4872–4880

    CAS  PubMed  Google Scholar 

  • M’kandawire E, Mierek-Adamska A, Stürzenbaum SR, Choongo K, Yabe J, Mwase M, Blindauer CA (2017) Metallothionein from wild populations of the African Catfish Clarias gariepinus: from sequence, protein expression and metal binding properties to transcriptional biomarker of metal pollution. Int J Mol Sci 18(7):1548–1575

    PubMed Central  Google Scholar 

  • Madico G, Quinn TC, Rompalo A, McKee KT, Gaydos CA (1998) Diagnosis of Trichomonas vaginalis infection by PCR using vaginal swab samples. J Clin Microbiol 36:3205–3210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miles AT, Hawksworth GM, Beattie JH, Rodilla V (2000) Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol 35(1):35–70

    CAS  PubMed  Google Scholar 

  • Nerland DE (2007) The antioxidant/electrophile response element motif. Drug Metab Rev 39(1):235–248

    CAS  PubMed  Google Scholar 

  • Nordberg M (1998) Metallothioneins: historical review and state of knowledge. Talanta 46:243–254

    CAS  PubMed  Google Scholar 

  • Nordberg M, Nordberg G (2000) Toxicological aspects of metallothionein. Cell Mol Biol (Noisy-le-Grand, France) 46:451–463

    CAS  Google Scholar 

  • Othman MS, Khonsue W, Kitana J, Thirakhupt K, Robson M, Borjan M, Kitana N (2012) Hepatic metallothionein and Glutathione-S-Transferase responses in two populations of rice frogs, Fejervarya limnocharis, naturally exposed to different environmental cadmium levels. Bull Environ Contam Toxicol 89:225–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrini-Martha V, Niederwanger M, Kopp R, Schnegg R, Dallinger R (2016) Physiological, diurnal and stress-related variability of cadmium-metallothionein gene expression in land snails. PLoS ONE 11:e0150442

    PubMed  PubMed Central  Google Scholar 

  • Piccinni E, Staudenmann W, Albergoni V, De Gabrieli R, James P (1994) Purification and primary structure of metallothioneins induced by cadmium in the protists Tetrahymena pigmentosa and Tetrahymena pyriformis. Eur J Biochem 226(3):853–859

    CAS  PubMed  Google Scholar 

  • Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM (2013) Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 3:90

    PubMed  PubMed Central  Google Scholar 

  • Radtke F, Georgiev O, Müller H-P, Brugnera E, Schaffner W (1995) Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Res 23:2277–2286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E (2018) Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol 17:297–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Šimonytė S, Čerkašin G, Plančiūnienė R, Naginienė R, Ryselis S, Ivanov L (2003) Influence of cadmium and zinc on the mice resistance to Listeria monocytogenes infection. Medicina 39:767–772

    PubMed  Google Scholar 

  • Sims HI, Chirn GW, Marr MT (2012) Single nucleotide in the MTF-1 binding site can determine metal-specific transcription activation. Proc Natl Acad Sci 109(41):16516–16521

    CAS  PubMed  Google Scholar 

  • Skolarczyk J, Budzyński M, Pekar J, Małecka-Massalska T, Skórzyńska-Dziduszko K (2018) The impact of cadmium on male infertility. J Elementol 23:35

    Google Scholar 

  • Stankovic RK, Chung RS, Penkowa M (2007) Metallothioneins I and II: neuroprotective significance during CNS pathology. Int J Biochem Cell Biol 39(3):484–489

    CAS  PubMed  Google Scholar 

  • Suzuki T, Takagi Y, Osanai H, Li L, Takeuchi M, Katoh Y, Kobayashi M, Yamamoto M (2005) Pi class glutathione S-transferase genes are regulated by Nrf 2 through an evolutionarily conserved regulatory element in zebrafish. Biochem J 388(Pt 1):65–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S (2012) Molecular functions of metallothionein and its role in hematological malignancies. J Hematol Oncol 5:41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker SL, Thornton CR, Tasker K, Jacob C, Giles G, Egan M, Talbot NJ (2004) A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell 16:1575–1588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vašák M, Meloni G (2011) Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem 16(7):1067–1078

    PubMed  Google Scholar 

  • Viarengo A, Burlando B, Ceratto N, Panfoli I (2000) Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol 46(2):407–417

    CAS  PubMed  Google Scholar 

  • Villalpando JL et al (2017) TvZNF1 is a C 2 H 2 zinc finger protein of Trichomonas vaginalis. Biometals 30(6):861–872

    CAS  PubMed  Google Scholar 

  • Waalkes MP, Anver MR, Diwan BA (1999) Chronic toxic and carcinogenic effects of oral cadmium in the Noble (NBL/Cr) rat: induction of neoplastic and proliferative lesions of the adrenal, kidney, prostate, and testes. J Toxicol Environ Health Part A 58:199–214

    CAS  PubMed  Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by UACM and a grant from CONACyT (83808) Mexico (to M.E.A.S.). JAMR was supported by a scholarship from CONACYT (296788). We acknowledge Ph.D.Vadim Pérez Koldenkova for their technical assistance with confocal microscopy at Laboratorio Nacional de Microscopía Avanzada/Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social. We appreciate the technical assistance of Laura Vazquez Carrillo and Alfredo Padilla-Barberi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Elizbeth Alvarez Sánchez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10534_2019_220_MOESM1_ESM.tif

Supplementary material 1 Fig. 1S Alignment of the MT1 and their homologues found in T. vaginalis. The proposed structural domains of the metal binding are repeated sequences. The N-terminal domains are different to others domains. Our predictions suggest that some domains (with 6-7 CYS) bind 2 divalent metals (Zn or Cd), other (with 9 CYS) 3 divalent metals and some (with 11 CYS) 4 divalent metal. Domains with 6-7 Cys can bind 2 metals, domains with 9 Cys can bind 3 metals and, domains with 11 Cys can bind 4 metals. The general consensus compared all repeated domains, the second consensus exclude the short domains (from XP_001321169.1: D5 and D7) and a Domain with modifications on the sequence from XP_001321197.1: D9). XP_001304130.1: TvMT-1 (TVAG_220940), XP_001584034.1: TvMT-2 (TVAG_182840), XP_001321169.1: TvMT-3 (TVAG_485930), XP_001321197.1: TvMT-4 (TVAG_486210) (TIFF 66979 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Netzahualcoyotzi, B.A., Puente-Rivera, J., Arreola, R. et al. Cadmium-dependent expression of a new metallothionein identified in Trichomonas vaginalis. Biometals 32, 887–899 (2019). https://doi.org/10.1007/s10534-019-00220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-019-00220-5

Keywords

Navigation