Skip to main content
Log in

A resettable dynamic microarray device

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This paper describes a simple reusable device that hydrodynamically traps a large number of beads in an array. Guiding pillars allow us to release the trapped beads by simply reversing the flow direction. The trap and reset operations are extremely simple, robust and highly efficient. We analyzed the path of the beads in a microchannel with pillars to optimize the design of the device. We succeeded in arraying hundreds of 100 μm microbeads, subsequently released them in a few minutes, and demonstrated multiple experiments with a single device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • C. Amador, A. Gavriilidis, P. Angeli, Biochem. Eng. J. 101, 379 (2004)

    Google Scholar 

  • D. Di Carlo, L.Y. Wu, L.P. Lee, Lab Chip 6, 1445 (2006)

    Article  Google Scholar 

  • D. Di Carlo, L.P. Lee, Anal. Chem. 78, 7918 (2006)

    Article  Google Scholar 

  • D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 23, 4974 (1998)

    Article  Google Scholar 

  • M. Dufva, J. Pettersen, L. Poulsen, Anal. Bioanal. Chem. 395, 669 (2009)

    Article  Google Scholar 

  • J.-P. Frimat, M. Becker, Y.-Y. Chiang, U. Marggraf, D. Janasek, J.G. Hengstler, J. Franzke, J. West, Lab Chip 11, 231 (2011)

    Article  Google Scholar 

  • J.P. Hartnett, M. Kostic, Int. Comm. Heat Mass Transfer 17, 59 (1990)

    Article  Google Scholar 

  • L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Sicence 304, 987 (2004)

    Article  Google Scholar 

  • A. Huebner, D. Bratton, G. Whyte, M. Yang, A.J. deMello, C. Abell, F. Hollfelder, Lab Chip 9, 692 (2009)

    Article  Google Scholar 

  • S.H. Hwang, A. Lehman, X. Cong, M.M. Olmstead, K.S. Lam, C.B. Lebrilla, M.J. Kurth, Org. Lett. 6, 3829 (2004)

    Article  Google Scholar 

  • H. Kimura, H. Nakamura, K. Iwai, T. Yamamoto, S. Takeuchi, Y. Sakai, T. Fujii, Int. J. Artif. Organs 32, 403 (2009)

    Google Scholar 

  • K.S. Lam, S.E. Salmon, E.M. Hersh, V. Hruby, W.M. Kazmierski, R.J. Knapp, Nature 354, 82 (1991)

    Article  Google Scholar 

  • K.S. Lam, R. Liu, S. Miyamoto, A.L. Lehman, J.M. Tuscano, Accounts Chem. Res. 36, 370 (2003)

    Article  Google Scholar 

  • N. Li, C.M. Ho, Lab Chip 8, 2105 (2008)

    Article  Google Scholar 

  • W.H. Robinson, C. DiGennaro, W. Hueber, B.B. Haab, M. Kamachi, E.J. Dean, S. Fournel, D. Fong, M.C. Genovese, H.E. Neuman de Vegvar, K. Skriner, D.L. Hirschberg, R.I. Morris, S. Muller, G.J. Pruijin, W.J. Venrooij, J.S. Smolen, P.O. Brown, L. Steinman, P.J. Utz, Nat. Med. 8, 295 (2002)

    Article  Google Scholar 

  • A. Rosenthal, J. Voldman, Biophys. J. 88, 2193 (2005)

    Article  Google Scholar 

  • J. Schlessinger, Nat. Biotechnol. 3, 232 (2002)

    Article  Google Scholar 

  • W. Shi, J. Qin, N. Ye, B. Lin, Lab Chip 8, 1432 (2008)

    Article  Google Scholar 

  • A.M. Skelley, O. Kirak, H. Suh, R. Jaenisch, J. Voldman, Nat. Methods 6, 147 (2009)

    Article  Google Scholar 

  • W.-H. Tan, S. Takeuchi, Proc. Natl. Acad. Sci. 104, 1146 (2007)

    Article  Google Scholar 

  • W.-H. Tan, S. Takeuchi, Lab Chip 8, 259 (2008)

    Article  Google Scholar 

  • T. Teshima, H. Ishihara, K. Iwai, A. Adachi, S. Takeuchi, Lab Chip 10, 2443 (2010)

    Article  Google Scholar 

  • J. Voldman, M.L. Gray, M. Toner, M.A. Schmidt, Anal. Chem. 74, 3984 (2002)

    Article  Google Scholar 

  • Z. Wang, M.C. Kim, M. Marquez, T. Thorsen, Lab Chip 7, 740 (2007)

    Article  Google Scholar 

  • K. Yoshimoto, M. Ichino, Nagasaki Yukio, Lab Chip 9, 1286 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

We thank Dai Nippon Printing Co., Ltd. for manufacturing devices made of glass-silicon-glass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Takeuchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Real-time movie showing the clogging of polystyrene microbeads (98.7 μm in diameter) with backward flow in the previous dynamic microarray device (Tan and Takeuchi 2007) (MPG 2430 kb)

Real-time movie showing the trapping of polystyrene microbeads (98.7 μm in diameter) with forward flow. The flow rate ratio of trapping stream and main stream is 2.73 (MPG 2002 kb)

Real-time movie showing the releasing of polystyrene microbeads (98.7 μm in diameter). The flow rate ratio of trapping stream and main stream is 2.18 (MPG 2866 kb)

Real-time movie showing the demonstration of arraying 100 microbeads (98.7 μm in diameter) with forward flow, retrieving single microbead with optically generated bubble (Tan and Takeuchi 2008), and releasing the trapped microbeads with backward flow in a single device. The flow rate ratio of trapping stream and main stream is 2.18. The device is made of glass and silicon with aluminum pads at the outlets of the trapping spots for generating bubbles, which is fabricated through the foundry service of Dai Nippon Printing Co., Ltd. (MPG 8538 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwai, K., Tan, WH., Ishihara, H. et al. A resettable dynamic microarray device. Biomed Microdevices 13, 1089–1094 (2011). https://doi.org/10.1007/s10544-011-9578-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9578-7

Keywords

Navigation