Skip to main content

Advertisement

Log in

Drug repurposing towards targeting cancer stem cells in pediatric brain tumors

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

In the pediatric population, brain tumors represent the most commonly diagnosed solid neoplasms and the leading cause of cancer-related deaths globally. They include low-grade gliomas (LGGs), medulloblastomas (MBs), and other embryonal, ependymal, and neuroectodermal tumors. The mainstay of treatment for most brain tumors includes surgical intervention, radiation therapy, and chemotherapy. However, resistance to conventional therapy is widespread, which contributes to the high mortality rates reported and lack of improvement in patient survival despite advancement in therapeutic research. This has been attributed to the presence of a subpopulation of cells, known as cancer stem cells (CSCs), which reside within the tumor bulk and maintain self-renewal and recurrence potential of the tumor. An emerging promising approach that enables identifying novel therapeutic strategies to target CSCs and overcome therapy resistance is drug repurposing or repositioning. This is based on using previously approved drugs with known pharmacokinetic and pharmacodynamic characteristics for indications other than their traditional ones, like cancer. In this review, we provide a synopsis of the drug repurposing methodologies that have been used in pediatric brain tumors, and we argue how this selective compilation of approaches, with a focus on CSC targeting, could elevate drug repurposing to the next level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pollack, I. F., & Jakacki, R. I. (2011). Childhood brain tumors: epidemiology, current management and future directions. Nature Reviews Neurology, 7(9), 495–506. https://doi.org/10.1038/nrneurol.2011.110.

    Article  PubMed  Google Scholar 

  2. Pollack, I. F. (1994). Brain tumors in children. New England Journal of Medicine, 331(22), 1500–1507. https://doi.org/10.1056/nejm199412013312207.

    Article  CAS  PubMed  Google Scholar 

  3. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69(1), 7–34. https://doi.org/10.3322/caac.21551.

    Article  Google Scholar 

  4. Smith, M. A., & Reaman, G. H. (2015). Remaining challenges in childhood cancer and newer targeted therapeutics. Pediatric Clinics of North America, 62(1), 301–312. https://doi.org/10.1016/j.pcl.2014.09.018.

    Article  PubMed  Google Scholar 

  5. Jones, D. T. W., Kieran, M. W., Bouffet, E., Alexandrescu, S., Bandopadhayay, P., Bornhorst, M., et al. (2018). Pediatric low-grade gliomas: next biologically driven steps. Neuro-Oncology, 20(2), 160–173. https://doi.org/10.1093/neuonc/nox141.

    Article  CAS  PubMed  Google Scholar 

  6. Aldape, K., Brindle, K. M., Chesler, L., Chopra, R., Gajjar, A., Gilbert, M. R., et al. (2019). Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 16(8), 509–520. https://doi.org/10.1038/s41571-019-0177-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mackay, A., Burford, A., Carvalho, D., Izquierdo, E., Fazal-Salom, J., Taylor, K. R., et al. (2017). Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell, 32(4), 520–537.e525. https://doi.org/10.1016/j.ccell.2017.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quail, D. F., & Joyce, J. A. (2017). The microenvironmental landscape of brain tumors. Cancer Cell, 31(3), 326–341. https://doi.org/10.1016/j.ccell.2017.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gilbertson, R. J. (2011). Mapping cancer origins. Cell, 145(1), 25–29. https://doi.org/10.1016/j.cell.2011.03.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abou-Antoun, T. J., Hale, J. S., Lathia, J. D., & Dombrowski, S. M. (2017). Brain cancer stem cells in adults and children: cell biology and therapeutic implications. Neurotherapeutics, 14(2), 372–384. https://doi.org/10.1007/s13311-017-0524-0.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bahmad, H. F., Chamaa, F., Assi, S., Chalhoub, R. M., Abou-Antoun, T., & Abou-Kheir, W. (2019). Cancer stem cells in neuroblastoma: expanding the therapeutic frontier. Frontiers in Molecular Neuroscience, 12, 131. https://doi.org/10.3389/fnmol.2019.00131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bahmad, H. F., & Poppiti, R. J. (submitted). Medulloblastoma cancer stem cells: molecular signatures and therapeutic targets. Journal of Clinical Pathology.

  13. Lathia, J. D. (2013). Cancer stem cells: moving past the controversy. CNS Oncol, 2(6), 465–467. https://doi.org/10.2217/cns.13.42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nowak-Sliwinska, P., Scapozza, L., & Altaba, A. R. I. (2019). Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochimica et biophysica acta. Reviews on cancer, 1871(2), 434–454, https://doi.org/10.1016/j.bbcan.2019.04.005.

  15. Hernandez, J. J., Pryszlak, M., Smith, L., Yanchus, C., Kurji, N., Shahani, V. M., et al. (2017). Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as Cancer therapeutics. Frontiers in Oncology, 7, 273. https://doi.org/10.3389/fonc.2017.00273.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bhat-Nakshatri, P., Goswami, C. P., Badve, S., Sledge Jr., G. W., & Nakshatri, H. (2013). Identification of FDA-approved drugs targeting breast cancer stem cells along with biomarkers of sensitivity. Scientific Reports, 3, 2530. https://doi.org/10.1038/srep02530.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tan, S. K., Jermakowicz, A., Mookhtiar, A. K., Nemeroff, C. B., Schürer, S. C., & Ayad, N. G. (2018). Drug repositioning in glioblastoma: a pathway perspective. [review]. Front Pharmacol, 9(218). https://doi.org/10.3389/fphar.2018.00218.

  18. Pui, C.-H., Gajjar, A. J., Kane, J. R., Qaddoumi, I. A., & Pappo, A. S. (2011). Challenging issues in pediatric oncology. Nature Reviews Clinical Oncology, 8(9), 540–549. https://doi.org/10.1038/nrclinonc.2011.95.

    Article  PubMed  PubMed Central  Google Scholar 

  19. National Cancer Institute. (2010). Surveillance, epidemiology and end results (pp. 1975–2007). SEER Cancer Statistics Review: Previous Version http://seer.cancer.gov/csr/.

    Google Scholar 

  20. Corsello, S. M., Bittker, J. A., Liu, Z., Gould, J., McCarren, P., Hirschman, J. E., et al. (2017). The drug repurposing hub: a next-generation drug library and information resource. Nature Medicine, 23(4), 405–408. https://doi.org/10.1038/nm.4306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Minturn, J. E., & Fisher, M. J. (2013). Gliomas in children. Current Treatment Options in Neurology, 15(3), 316–327. https://doi.org/10.1007/s11940-013-0225-x.

    Article  PubMed  Google Scholar 

  22. Sievert, A. J., & Fisher, M. J. (2009). Pediatric low-grade gliomas. Journal of Child Neurology, 24(11), 1397–1408. https://doi.org/10.1177/0883073809342005.

    Article  PubMed  PubMed Central  Google Scholar 

  23. El-Ayadi, M., Ansari, M., Sturm, D., Gielen, G. H., Warmuth-Metz, M., Kramm, C. M., et al. (2017). High-grade glioma in very young children: a rare and particular patient population. Oncotarget, 8(38), 64564–64578. https://doi.org/10.18632/oncotarget.18478.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sturm, D., Pfister, S. M., & Jones, D. T. W. (2017). Pediatric gliomas: current concepts on diagnosis, biology, and clinical management. Journal of Clinical Oncology, 35(21), 2370–2377. https://doi.org/10.1200/JCO.2017.73.0242.

    Article  PubMed  Google Scholar 

  25. Miyashita, K., Kawakami, K., Nakada, M., Mai, W., Shakoori, A., Fujisawa, H., et al. (2009). Potential therapeutic effect of glycogen synthase kinase 3beta inhibition against human glioblastoma. Clinical Cancer Research, 15(3), 887–897. https://doi.org/10.1158/1078-0432.CCR-08-0760.

    Article  CAS  PubMed  Google Scholar 

  26. Nam, J. Y., & de Groot, J. F. (2017). Treatment of glioblastoma. Journal of Oncology Practice/ American Society of Clinical Oncology, 13(10), 629–638. https://doi.org/10.1200/JOP.2017.025536.

    Article  Google Scholar 

  27. Xu, H. S., Qin, X. L., Zong, H. L., He, X. G., & Cao, L. (2017). Cancer stem cell markers in glioblastoma—an update. European Review for Medical and Pharmacological Sciences, 21(14), 3207–3211.

    PubMed  Google Scholar 

  28. Singh, S. K., Clarke, I. D., Hide, T., & Dirks, P. B. (2004). Cancer stem cells in nervous system tumors. Oncogene, 23(43), 7267–7273. https://doi.org/10.1038/sj.onc.1207946.

    Article  CAS  PubMed  Google Scholar 

  29. Abbruzzese, C., Matteoni, S., Signore, M., Cardone, L., Nath, K., Glickson, J. D., et al. (2017). Drug repurposing for the treatment of glioblastoma multiforme. Journal of Experimental & Clinical Cancer Research, 36(1), 169. https://doi.org/10.1186/s13046-017-0642-x.

    Article  CAS  Google Scholar 

  30. Wang, Y., Meng, Y., Zhang, S., Wu, H., Yang, D., Nie, C., et al. (2018). Phenformin and metformin inhibit growth and migration of LN229 glioma cells in vitro and in vivo. Onco Targets Ther, 11, 6039–6048. https://doi.org/10.2147/OTT.S168981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang, W., Finniss, S., Cazacu, S., Xiang, C., Brodie, Z., Mikkelsen, T., et al. (2016). Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma. Oncotarget, 7(35), 56456–56470. https://doi.org/10.18632/oncotarget.10919.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Koyuturk, M., Ersoz, M., & Altiok, N. (2004). Simvastatin induces proliferation inhibition and apoptosis in C6 glioma cells via c-jun N-terminal kinase. Neuroscience Letters, 370(2–3), 212–217. https://doi.org/10.1016/j.neulet.2004.08.020.

    Article  CAS  PubMed  Google Scholar 

  33. Xiao, A., Brenneman, B., Floyd, D., Comeau, L., Spurio, K., Olmez, I., et al. (2019). Statins affect human glioblastoma and other cancers through TGF-beta inhibition. Oncotarget, 10(18), 1716–1728. https://doi.org/10.18632/oncotarget.26733.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pinter, M., & Jain, R. K. (2017). Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Science Translational Medicine, 9(410). https://doi.org/10.1126/scitranslmed.aan5616.

  35. Kitabayashi, T., Dong, Y., Furuta, T., Sabit, H., Jiapaer, S., Zhang, J., et al. (2019). Identification of GSK3β inhibitor kenpaullone as a temozolomide enhancer against glioblastoma. Scientific Reports, 9(1), 10049. https://doi.org/10.1038/s41598-019-46454-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Handley, M. V. (2015). GSK-3 inhibitors in glioblastoma therapy: mechanisms of action. BOSTON UNIVERSITY.

  37. Nowicki, M. O., Dmitrieva, N., Stein, A. M., Cutter, J. L., Godlewski, J., Saeki, Y., et al. (2008). Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3. Neuro-Oncology, 10(5), 690–699. https://doi.org/10.1215/15228517-2008-041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chirasani, S. R., Leukel, P., Gottfried, E., Hochrein, J., Stadler, K., Neumann, B., et al. (2013). Diclofenac inhibits lactate formation and efficiently counteracts local immune suppression in a murine glioma model. International Journal of Cancer, 132(4), 843–853. https://doi.org/10.1002/ijc.27712.

    Article  CAS  PubMed  Google Scholar 

  39. Leidgens, V., Seliger, C., Jachnik, B., Welz, T., Leukel, P., Vollmann-Zwerenz, A., et al. (2015). Ibuprofen and diclofenac restrict migration and proliferation of human glioma cells by distinct molecular mechanisms. PLoS One, 10(10), e0140613. https://doi.org/10.1371/journal.pone.0140613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tuettenberg, J., Grobholz, R., Korn, T., Wenz, F., Erber, R., & Vajkoczy, P. (2005). Continuous low-dose chemotherapy plus inhibition of cyclooxygenase-2 as an antiangiogenic therapy of glioblastoma multiforme. Journal of Cancer Research and Clinical Oncology, 131(1), 31–40. https://doi.org/10.1007/s00432-004-0620-5.

    Article  CAS  PubMed  Google Scholar 

  41. Johannessen, T. C., Hasan-Olive, M. M., Zhu, H., Denisova, O., Grudic, A., Latif, M. A., et al. (2019). Thioridazine inhibits autophagy and sensitizes glioblastoma cells to temozolomide. International Journal of Cancer, 144(7), 1735–1745. https://doi.org/10.1002/ijc.31912.

    Article  CAS  PubMed  Google Scholar 

  42. Kang, S., Lee, J. M., Jeon, B., Elkamhawy, A., Paik, S., Hong, J., et al. (2018). Repositioning of the antipsychotic trifluoperazine: synthesis, biological evaluation and in silico study of trifluoperazine analogs as anti-glioblastoma agents. European Journal of Medicinal Chemistry, 151, 186–198. https://doi.org/10.1016/j.ejmech.2018.03.055.

    Article  CAS  PubMed  Google Scholar 

  43. Hayashi, K., Michiue, H., Yamada, H., Takata, K., Nakayama, H., Wei, F. Y., et al. (2016). Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization. Scientific Reports, 6, 23372. https://doi.org/10.1038/srep23372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Al Hassan, M., Fakhoury, I., El Masri, Z., Ghazale, N., Dennaoui, R., El Atat, O., et al. (2018). Metformin treatment inhibits motility and invasion of glioblastoma cancer cells. Analytical Cellular Pathology, 2018, 9. https://doi.org/10.1155/2018/5917470.

    Article  CAS  Google Scholar 

  45. Oesterle, A., Laufs, U., & Liao, J. K. (2017). Pleiotropic effects of statins on the cardiovascular system. Circulation Research, 120(1), 229–243. https://doi.org/10.1161/CIRCRESAHA.116.308537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shojaei, S., Alizadeh, J., Thliveris, J., Koleini, N., Kardami, E., Hatch, G. M., et al. (2018). Statins: a new approach to combat temozolomide chemoresistance in glioblastoma. Journal of Investigative Medicine, 66(8), 1083–1087. https://doi.org/10.1136/jim-2018-000874.

    Article  PubMed  Google Scholar 

  47. Rasmussen, E. R., Pottegard, A., Bygum, A., von Buchwald, C., Homoe, P., & Hallas, J. (2019). Angiotensin II receptor blockers are safe in patients with prior angioedema related to angiotensin-converting enzyme inhibitors - a nationwide registry-based cohort study. Journal of Internal Medicine, 285(5), 553–561. https://doi.org/10.1111/joim.12867.

    Article  CAS  PubMed  Google Scholar 

  48. Barreras, A., & Gurk-Turner, C. (2003). Angiotensin II receptor blockers. Proc (Bayl Univ Med Cent), 16(1), 123–126. https://doi.org/10.1080/08998280.2003.11927893.

    Article  Google Scholar 

  49. Ino, K., Shibata, K., Kajiyama, H., Yamamoto, E., Nagasaka, T., Nawa, A., et al. (2006). Angiotensin II type 1 receptor expression in ovarian cancer and its correlation with tumour angiogenesis and patient survival. British Journal of Cancer, 94(4), 552–560. https://doi.org/10.1038/sj.bjc.6602961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arrieta, O., Villarreal-Garza, C., Vizcaino, G., Pineda, B., Hernandez-Pedro, N., Guevara-Salazar, P., et al. (2015). Association between AT1 and AT2 angiotensin II receptor expression with cell proliferation and angiogenesis in operable breast cancer. Tumour Biology, 36(7), 5627–5634. https://doi.org/10.1007/s13277-015-3235-3.

    Article  CAS  PubMed  Google Scholar 

  51. Rocken, C., Rohl, F. W., Diebler, E., Lendeckel, U., Pross, M., Carl-McGrath, S., et al. (2007). The angiotensin II/angiotensin II receptor system correlates with nodal spread in intestinal type gastric cancer. Cancer Epidemiology, Biomarkers & Prevention, 16(6), 1206–1212. https://doi.org/10.1158/1055-9965.epi-05-0934.

    Article  Google Scholar 

  52. Feng, E., Sui, C., Wang, T., & Sun, G. (2017). Temozolomide with or without radiotherapy in patients with newly diagnosed glioblastoma Multiforme: a meta-analysis. European Neurology, 77(3–4), 201–210. https://doi.org/10.1159/000455842.

    Article  CAS  PubMed  Google Scholar 

  53. Ghaffari, S. (2011). Cancer, stem cells and cancer stem cells: old ideas, new developments. F1000 Med Rep, 3, 23. https://doi.org/10.3410/M3-23.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nakada M., M. T, Pyko I., Hayashi Y. and Hamada J. (2011). The pivotal roles of GSK3β in glioma biology In M. Garami (Ed.), Molecular Targets of CNS Tumors IntechOpen.

  55. Vashishtha, V., Jinghan, N., & A, K. Y. (2018). Antagonistic role of GSK3 isoforms in glioma survival. Journal of Cancer, 9(10), 1846–1855. https://doi.org/10.7150/jca.21248.

  56. Llorens-Martin, M., Jurado, J., Hernandez, F., & Avila, J. (2014). GSK-3beta, a pivotal kinase in Alzheimer disease. Frontiers in Molecular Neuroscience, 7, 46. https://doi.org/10.3389/fnmol.2014.00046.

    Article  CAS  PubMed  Google Scholar 

  57. del Ser, T., Steinwachs, K. C., Gertz, H. J., Andres, M. V., Gomez-Carrillo, B., Medina, M., et al. (2013). Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. Journal of Alzheimer's Disease, 33(1), 205–215. https://doi.org/10.3233/JAD-2012-120805.

    Article  CAS  PubMed  Google Scholar 

  58. Tolosa, E., Litvan, I., Hoglinger, G. U., Burn, D., Lees, A., Andres, M. V., et al. (2014). A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Movement Disorders, 29(4), 470–478. https://doi.org/10.1002/mds.25824.

    Article  CAS  PubMed  Google Scholar 

  59. Lovestone, S., Boada, M., Dubois, B., Hull, M., Rinne, J. O., Huppertz, H. J., et al. (2015). A phase II trial of tideglusib in Alzheimer’s disease. Journal of Alzheimer's Disease, 45(1), 75–88. https://doi.org/10.3233/jad-141959.

    Article  CAS  PubMed  Google Scholar 

  60. Mathuram, T. L., Ravikumar, V., Reece, L. M., Karthik, S., Sasikumar, C. S., & Cherian, K. M. (2016). Tideglusib induces apoptosis in human neuroblastoma IMR32 cells, provoking sub-G0/G1 accumulation and ROS generation. Environmental Toxicology and Pharmacology, 46, 194–205. https://doi.org/10.1016/j.etap.2016.07.013.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, A., Lin, K., Zhang, S., Chen, Y., Zhang, N., Xue, J., et al. (2016). Nuclear GSK3beta promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nature Cell Biology, 18(9), 954–966. https://doi.org/10.1038/ncb3396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chalhoub, R. M., Bahmad, H. F., Harati, H., Assi, S., Araji, T., Bou-Gharios, J., et al. (2019). Specific inhibition of GSK-3β by Tideglusib: potential therapeutic target for neuroblastoma cancer stem cells. Submitted.

  63. Hata, A. N., & Breyer, R. M. (2004). Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacology & Therapeutics, 103(2), 147–166. https://doi.org/10.1016/j.pharmthera.2004.06.003.

    Article  CAS  Google Scholar 

  64. Amano, H., Hayashi, I., Endo, H., Kitasato, H., Yamashina, S., Maruyama, T., et al. (2003). Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. The Journal of Experimental Medicine, 197(2), 221–232. https://doi.org/10.1084/jem.20021408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Seliger, C., & Hau, P. (2018). Drug repurposing of metabolic agents in malignant glioma. International Journal of Molecular Sciences, 19(9). https://doi.org/10.3390/ijms19092768.

  66. Li, J., Kim, S. G., & Blenis, J. (2014). Rapamycin: One drug, many effects. Cell Metabolism, 19(3), 373–379. https://doi.org/10.1016/j.cmet.2014.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, Z., Hackshaw, A., Feng, Q., Fu, X., Zhang, Y., Mao, C., et al. (2017). Comparison of gefitinib, erlotinib and afatinib in non-small cell lung cancer: a meta-analysis. International Journal of Cancer, 140(12), 2805–2819. https://doi.org/10.1002/ijc.30691.

    Article  CAS  PubMed  Google Scholar 

  68. Yalon, M., Rood, B., MacDonald, T. J., McCowage, G., Kane, R., Constantini, S., et al. (2013). A feasibility and efficacy study of rapamycin and erlotinib for recurrent pediatric low-grade glioma (LGG). Pediatric Blood & Cancer, 60(1), 71–76. https://doi.org/10.1002/pbc.24142.

    Article  CAS  Google Scholar 

  69. Mollashahi, B., Aghamaleki, F. S., & Movafagh, A. (2019). The roles of miRNAs in medulloblastoma: a systematic review. J Cancer Prev, 24(2), 79–90. https://doi.org/10.15430/jcp.2019.24.2.79.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zulch, K. J. (1980). Principles of the new World Health Organization (WHO) classification of brain tumors. Neuroradiology, 19(2), 59–66. https://doi.org/10.1007/bf00342596.

    Article  CAS  PubMed  Google Scholar 

  71. DeAngelis, L. M. (2001). Brain tumors. The New England Journal of Medicine, 344(2), 114–123. https://doi.org/10.1056/nejm200101113440207.

    Article  CAS  PubMed  Google Scholar 

  72. Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturla, L. M., Angelo, M., McLaughlin, M. E., et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415(6870), 436–442. https://doi.org/10.1038/415436a.

    Article  CAS  PubMed  Google Scholar 

  73. Thompson, M. C., Fuller, C., Hogg, T. L., Dalton, J., Finkelstein, D., Lau, C. C., et al. (2006). Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. Journal of Clinical Oncology, 24(12), 1924–1931. https://doi.org/10.1200/jco.2005.04.4974.

    Article  CAS  PubMed  Google Scholar 

  74. Kool, M., Koster, J., Bunt, J., Hasselt, N. E., Lakeman, A., van Sluis, P., et al. (2008). Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One, 3(8), e3088. https://doi.org/10.1371/journal.pone.0003088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cho, Y. J., Tsherniak, A., Tamayo, P., Santagata, S., Ligon, A., Greulich, H., et al. (2011). Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. Journal of Clinical Oncology, 29(11), 1424–1430. https://doi.org/10.1200/jco.2010.28.5148.

    Article  PubMed  Google Scholar 

  76. Taylor, M. D., Northcott, P. A., Korshunov, A., Remke, M., Cho, Y. J., Clifford, S. C., et al. (2012). Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica, 123(4), 465–472. https://doi.org/10.1007/s00401-011-0922-z.

    Article  CAS  PubMed  Google Scholar 

  77. Thomas, A., & Noel, G. (2019). Medulloblastoma: optimizing care with a multidisciplinary approach. Journal of Multidisciplinary Healthcare, 12, 335–347. https://doi.org/10.2147/jmdh.s167808.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760. https://doi.org/10.1038/nature05236.

    Article  CAS  PubMed  Google Scholar 

  79. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401. https://doi.org/10.1038/nature03128.

    Article  CAS  PubMed  Google Scholar 

  80. Abouantoun, T. J., Castellino, R. C., & MacDonald, T. J. (2011). Sunitinib induces PTEN expression and inhibits PDGFR signaling and migration of medulloblastoma cells. Journal of Neuro-Oncology, 101(2), 215–226. https://doi.org/10.1007/s11060-010-0259-9.

    Article  CAS  PubMed  Google Scholar 

  81. Abouantoun, T. J., & MacDonald, T. J. (2009). Imatinib blocks migration and invasion of medulloblastoma cells by concurrently inhibiting activation of platelet-derived growth factor receptor and transactivation of epidermal growth factor receptor. Molecular Cancer Therapeutics, 8(5), 1137–1147. https://doi.org/10.1158/1535-7163.mct-08-0889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wolle, D., Lee, S. J., Li, Z., Litan, A., Barwe, S. P., & Langhans, S. A. (2014). Inhibition of epidermal growth factor signaling by the cardiac glycoside ouabain in medulloblastoma. Cancer Medicine, 3(5), 1146–1158. https://doi.org/10.1002/cam4.314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang, L., Garrett Injac, S., Cui, K., Braun, F., Lin, Q., Du, Y., et al. (2018). Systems biology-based drug repositioning identifies digoxin as a potential therapy for groups 3 and 4 medulloblastoma. Science Translational Medicine, 10(464). https://doi.org/10.1126/scitranslmed.aat0150.

  84. Takwi, A. A., Li, Y., Becker Buscaglia, L. E., Zhang, J., Choudhury, S., Park, A. K., et al. (2012). A statin-regulated microRNA represses human c-Myc expression and function. EMBO Molecular Medicine, 4(9), 896–909. https://doi.org/10.1002/emmm.201101045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bar, E. E., Chaudhry, A., Farah, M. H., & Eberhart, C. G. (2007). Hedgehog signaling promotes medulloblastoma survival via Bc/II. The American Journal of Pathology, 170(1), 347–355. https://doi.org/10.2353/ajpath.2007.060066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bar, E. E., & Stearns, D. (2008). New developments in medulloblastoma treatment: the potential of a cyclopamine-lovastatin combination. Expert Opinion on Investigational Drugs, 17(2), 185–195. https://doi.org/10.1517/13543784.17.2.185.

    Article  CAS  PubMed  Google Scholar 

  87. Sheikholeslami, K., Ali Sher, A., Lockman, S., Kroft, D., Ganjibakhsh, M., Nejati-Koshki, K., et al. (2019). Simvastatin induces apoptosis in medulloblastoma brain tumor cells via mevalonate cascade prenylation substrates. Cancers (Basel), 11(7). https://doi.org/10.3390/cancers11070994.

  88. Bai, R. Y., Staedtke, V., Rudin, C. M., Bunz, F., & Riggins, G. J. (2015). Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis. Neuro-Oncology, 17(4), 545–554. https://doi.org/10.1093/neuonc/nou234.

    Article  CAS  PubMed  Google Scholar 

  89. Larsen, A. R., Bai, R. Y., Chung, J. H., Borodovsky, A., Rudin, C. M., Riggins, G. J., et al. (2015). Repurposing the antihelmintic mebendazole as a hedgehog inhibitor. Molecular Cancer Therapeutics, 14(1), 3–13. https://doi.org/10.1158/1535-7163.mct-14-0755-t.

    Article  CAS  PubMed  Google Scholar 

  90. Bell, J. B., Rink, J. S., Eckerdt, F., Clymer, J., Goldman, S., Thaxton, C. S., et al. (2018). HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma. Scientific Reports, 8(1), 1211. https://doi.org/10.1038/s41598-017-18100-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rossi, A., Russo, G., Puca, A., La Montagna, R., Caputo, M., Mattioli, E., et al. (2009). The antiretroviral nucleoside analogue Abacavir reduces cell growth and promotes differentiation of human medulloblastoma cells. International Journal of Cancer, 125(1), 235–243. https://doi.org/10.1002/ijc.24331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Baryawno, N., Sveinbjornsson, B., Eksborg, S., Orrego, A., Segerstrom, L., Oqvist, C. O., et al. (2008). Tumor-growth-promoting cyclooxygenase-2 prostaglandin E2 pathway provides medulloblastoma therapeutic targets. Neuro-Oncology, 10(5), 661–674. https://doi.org/10.1215/15228517-2008-035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang, M. Y., Lee, H. T., Chen, C. M., Shen, C. C., & Ma, H. I. (2014). Celecoxib suppresses the phosphorylation of STAT3 protein and can enhance the radiosensitivity of medulloblastoma-derived cancer stem-like cells. International Journal of Molecular Sciences, 15(6), 11013–11029. https://doi.org/10.3390/ijms150611013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Eslin, D., Lee, C., Sankpal, U. T., Maliakal, P., Sutphin, R. M., Abraham, L., et al. (2013). Anticancer activity of tolfenamic acid in medulloblastoma: a preclinical study. Tumour Biology, 34(5), 2781–2789. https://doi.org/10.1007/s13277-013-0836-6.

    Article  CAS  PubMed  Google Scholar 

  95. Kaplan, J. H. (2002). Biochemistry of Na,K-ATPase. Annual Review of Biochemistry, 71, 511–535. https://doi.org/10.1146/annurev.biochem.71.102201.141218.

    Article  CAS  PubMed  Google Scholar 

  96. Lingrel, J. B. (2010). The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annual Review of Physiology, 72, 395–412. https://doi.org/10.1146/annurev-physiol-021909-135725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mijatovic, T., Van Quaquebeke, E., Delest, B., Debeir, O., Darro, F., & Kiss, R. (2007). Cardiotonic steroids on the road to anti-cancer therapy. Biochimica et Biophysica Acta, 1776(1), 32–57. https://doi.org/10.1016/j.bbcan.2007.06.002.

    Article  CAS  PubMed  Google Scholar 

  98. Yamada, M., Ikeuchi, T., & Hatanaka, H. (1997). The neurotrophic action and signalling of epidermal growth factor. Progress in Neurobiology, 51(1), 19–37.

    Article  CAS  PubMed  Google Scholar 

  99. Wong, R. W., & Guillaud, L. (2004). The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine & Growth Factor Reviews, 15(2–3), 147–156. https://doi.org/10.1016/j.cytogfr.2004.01.004.

    Article  CAS  Google Scholar 

  100. Gilbertson, R. J., Perry, R. H., Kelly, P. J., Pearson, A. D., & Lunec, J. (1997). Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Research, 57(15), 3272–3280.

    CAS  PubMed  Google Scholar 

  101. Waage, I. S., Vreim, I., & Torp, S. H. (2013). C-erbB2/HER2 in human gliomas, medulloblastomas, and meningiomas: a minireview. International Journal of Surgical Pathology, 21(6), 573–582. https://doi.org/10.1177/1066896913492196.

    Article  PubMed  Google Scholar 

  102. Bal, M. M., Das Radotra, B., Srinivasan, R., & Sharma, S. C. (2006). Does c-erbB-2 expression have a role in medulloblastoma prognosis? Indian Journal of Pathology & Microbiology, 49(4), 535–539.

    Google Scholar 

  103. Ivanov, D. P., Coyle, B., Walker, D. A., & Grabowska, A. M. (2016). In vitro models of medulloblastoma: choosing the right tool for the job. Journal of Biotechnology, 236, 10–25. https://doi.org/10.1016/j.jbiotec.2016.07.028.

    Article  CAS  PubMed  Google Scholar 

  104. Zeki, A. A., Yeganeh, B., Kenyon, N. J., & Ghavami, S. (2017). Editorial: new insights into a classical pathway: key roles of the mevalonate cascade in different diseases (part II). Current Molecular Pharmacology, 10(2), 74–76. https://doi.org/10.2174/187446721002170301204357.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Matusewicz, L., Meissner, J., Toporkiewicz, M., & Sikorski, A. F. (2015). The effect of statins on cancer cells—review. Tumour Biology, 36(7), 4889–4904. https://doi.org/10.1007/s13277-015-3551-7.

    Article  CAS  PubMed  Google Scholar 

  106. Chan, K. K., Oza, A. M., & Siu, L. L. (2003). The statins as anticancer agents. Clinical Cancer Research, 9(1), 10–19.

    CAS  PubMed  Google Scholar 

  107. Bjarnadottir, O., Kimbung, S., Johansson, I., Veerla, S., Jonsson, M., Bendahl, P. O., et al. (2015). Global transcriptional changes following statin treatment in breast cancer. Clinical Cancer Research, 21(15), 3402–3411. https://doi.org/10.1158/1078-0432.ccr-14-1403.

    Article  CAS  PubMed  Google Scholar 

  108. Wang, T., Seah, S., Loh, X., Chan, C. W., Hartman, M., Goh, B. C., et al. (2016). Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway. Oncotarget, 7(3), 2532–2544. https://doi.org/10.18632/oncotarget.6304.

    Article  PubMed  Google Scholar 

  109. de Bont, J. M., Packer, R. J., Michiels, E. M., den Boer, M. L., & Pieters, R. (2008). Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro-Oncology, 10(6), 1040–1060. https://doi.org/10.1215/15228517-2008-059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cochrane, C. R., Szczepny, A., Watkins, D. N., & Cain, J. E. (2015). Hedgehog signaling in the maintenance of cancer stem cells. Cancers (Basel), 7(3), 1554–1585. https://doi.org/10.3390/cancers7030851.

    Article  CAS  Google Scholar 

  111. Northcott, P. A., Dubuc, A. M., Pfister, S., & Taylor, M. D. (2012). Molecular subgroups of medulloblastoma. Expert Review of Neurotherapeutics, 12(7), 871–884. https://doi.org/10.1586/ern.12.66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Guerini, A. E., Triggiani, L., Maddalo, M., Bonu, M. L., Frassine, F., Baiguini, A., et al. (2019). Mebendazole as a candidate for drug repurposing in oncology: an extensive review of current literature. Cancers (Basel), 11(9). https://doi.org/10.3390/cancers11091284.

  113. Kohler, P. (2001). The biochemical basis of anthelmintic action and resistance. International Journal for Parasitology, 31(4), 336–345. https://doi.org/10.1016/s0020-7519(01)00131-x.

    Article  CAS  PubMed  Google Scholar 

  114. Goel, H. L., & Mercurio, A. M. (2013). VEGF targets the tumour cell. Nature Reviews. Cancer, 13(12), 871–882. https://doi.org/10.1038/nrc3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bai, R. Y., Staedtke, V., Wanjiku, T., Rudek, M. A., Joshi, A., Gallia, G. L., et al. (2015). Brain penetration and efficacy of different mebendazole polymorphs in a mouse brain tumor model. Clinical Cancer Research, 21(15), 3462–3470. https://doi.org/10.1158/1078-0432.ccr-14-2681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rohatgi, R., Milenkovic, L., & Scott, M. P. (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science, 317(5836), 372–376. https://doi.org/10.1126/science.1139740.

    Article  CAS  PubMed  Google Scholar 

  117. Yuen, G. J., Weller, S., & Pakes, G. E. (2008). A review of the pharmacokinetics of abacavir. Clinical Pharmacokinetics, 47(6), 351–371. https://doi.org/10.2165/00003088-200847060-00001.

    Article  CAS  PubMed  Google Scholar 

  118. Phatak, P., & Burger, A. M. (2007). Telomerase and its potential for therapeutic intervention. British Journal of Pharmacology, 152(7), 1003–1011. https://doi.org/10.1038/sj.bjp.0707374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tendian, S. W., & Parker, W. B. (2000). Interaction of deoxyguanosine nucleotide analogs with human telomerase. Molecular Pharmacology, 57(4), 695–699. https://doi.org/10.1124/mol.57.4.695.

    Article  CAS  PubMed  Google Scholar 

  120. Shay, J. W., & Keith, W. N. (2008). Targeting telomerase for cancer therapeutics. British Journal of Cancer, 98(4), 677–683. https://doi.org/10.1038/sj.bjc.6604209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chang, Q., Pang, J. C., Li, J., Hu, L., Kong, X., & Ng, H. K. (2004). Molecular analysis of PinX1 in medulloblastomas. International Journal of Cancer, 109(2), 309–314. https://doi.org/10.1002/ijc.11689.

    Article  CAS  PubMed  Google Scholar 

  122. Witzig, T. E., Timm, M., Stenson, M., Svingen, P. A., & Kaufmann, S. H. (2000). Induction of apoptosis in malignant B cells by phenylbutyrate or phenylacetate in combination with chemotherapeutic agents. Clinical Cancer Research, 6(2), 681–692.

    CAS  PubMed  Google Scholar 

  123. Shay, J. W., & Wright, W. E. (2005). Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis, 26(5), 867–874. https://doi.org/10.1093/carcin/bgh296.

    Article  CAS  PubMed  Google Scholar 

  124. Epling-Burnette, P. K., Liu, J. H., Catlett-Falcone, R., Turkson, J., Oshiro, M., Kothapalli, R., et al. (2001). Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. The Journal of Clinical Investigation, 107(3), 351–362. https://doi.org/10.1172/jci9940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kim, K. W., Mutter, R. W., Cao, C., Albert, J. M., Shinohara, E. T., Sekhar, K. R., et al. (2006). Inhibition of signal transducer and activator of transcription 3 activity results in down-regulation of Survivin following irradiation. Molecular Cancer Therapeutics, 5(11), 2659–2665. https://doi.org/10.1158/1535-7163.mct-06-0261.

    Article  CAS  PubMed  Google Scholar 

  126. Chen, K. H., Hsu, C. C., Song, W. S., Huang, C. S., Tsai, C. C., Kuo, C. D., et al. (2010). Celecoxib enhances radiosensitivity in medulloblastoma-derived CD133-positive cells. Child's Nervous System, 26(11), 1605–1612. https://doi.org/10.1007/s00381-010-1190-2.

    Article  PubMed  Google Scholar 

  127. Abdelrahim, M., Baker, C. H., Abbruzzese, J. L., & Safe, S. (2006). Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. Journal of the National Cancer Institute, 98(12), 855–868. https://doi.org/10.1093/jnci/djj232.

    Article  CAS  PubMed  Google Scholar 

  128. Shelake, S., Sankpal, U. T., Paul Bowman, W., Wise, M., Ray, A., & Basha, R. (2017). Targeting specificity protein 1 transcription factor and survivin using tolfenamic acid for inhibiting Ewing sarcoma cell growth. Investigational New Drugs, 35(2), 158–165. https://doi.org/10.1007/s10637-016-0417-9.

    Article  CAS  PubMed  Google Scholar 

  129. Yao, J. C., Wang, L., Wei, D., Gong, W., Hassan, M., Wu, T. T., et al. (2004). Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clinical Cancer Research, 10(12 Pt 1), 4109–4117. https://doi.org/10.1158/1078-0432.ccr-03-0628.

    Article  CAS  PubMed  Google Scholar 

  130. Patil, S., Sankpal, U. T., Hurtado, M., Bowman, W. P., Murray, J., Borgmann, K., et al. (2019). Combination of clotam and vincristine enhances anti-proliferative effect in medulloblastoma cells. Gene, 705, 67–76. https://doi.org/10.1016/j.gene.2019.04.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Colon, N. C., & Chung, D. H. (2011). Neuroblastoma. Advances in Pediatrics, 58(1), 297–311. https://doi.org/10.1016/j.yapd.2011.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zaatiti, H., Abdallah, J., Nasr, Z., Khazen, G., Sandler, A., & Abou-Antoun, T. J. (2018). Tumorigenic proteins upregulated in the MYCN-amplified IMR-32 human neuroblastoma cells promote proliferation and migration. International Journal of Oncology, 52(3), 787–803. https://doi.org/10.3892/ijo.2018.4236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Abou-Antoun, T. J., Nazarian, J., Ghanem, A., Vukmanovic, S., & Sandler, A. D. (2018). Molecular and functional analysis of anchorage independent, treatment-evasive neuroblastoma tumorspheres with enhanced malignant properties: a possible explanation for radio-therapy resistance. PLoS One, 13(1), e0189711. https://doi.org/10.1371/journal.pone.0189711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lopez-Barcons, L., Maurer, B. J., Kang, M. H., & Reynolds, C. P. (2017). P450 inhibitor ketoconazole increased the intratumor drug levels and antitumor activity of fenretinide in human neuroblastoma xenograft models. International Journal of Cancer, 141(2), 405–413. https://doi.org/10.1002/ijc.30706.

    Article  CAS  PubMed  Google Scholar 

  135. Michaelis, M., Agha, B., Rothweiler, F., Löschmann, N., Voges, Y., Mittelbronn, M., et al. (2015). Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen. Scientific Reports, 5, 8202–8202. https://doi.org/10.1038/srep08202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhong, X., Zhao, E., Tang, C., Zhang, W., Tan, J., Dong, Z., et al. (2016). Antibiotic drug tigecycline reduces neuroblastoma cells proliferation by inhibiting Akt activation in vitro and in vivo. Tumor Biology, 37(6), 7615–7623. https://doi.org/10.1007/s13277-015-4613-6.

    Article  CAS  PubMed  Google Scholar 

  137. Di Zanni, E., Bianchi, G., Ravazzolo, R., Raffaghello, L., Ceccherini, I., & Bachetti, T. (2017). Targeting of PHOX2B expression allows the identification of drugs effective in counteracting neuroblastoma cell growth. Oncotarget, 8(42), 72133–72146. https://doi.org/10.18632/oncotarget.19922.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Aveic, S., Pantile, M., Polo, P., Sidarovich, V., De Mariano, M., Quattrone, A., et al. (2018). Autophagy inhibition improves the cytotoxic effects of receptor tyrosine kinase inhibitors. Cancer Cell International, 18, 63–63. https://doi.org/10.1186/s12935-018-0557-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Saulnier Sholler, G. L., Kalkunte, S., Greenlaw, C., McCarten, K., & Forman, E. (2006). Antitumor activity of Nifurtimox observed in a patient with neuroblastoma. Journal of Pediatric Hematology/Oncology, 28(10).

  140. Saulnier Sholler, G. L., Brard, L., Straub, J. A., Dorf, L., Illeyne, S., Koto, K., et al. (2009). Nifurtimox induces apoptosis of neuroblastoma cells in vitro and in vivo. Journal of Pediatric Hematology/Oncology, 31(3), 187–193. https://doi.org/10.1097/MPH.0b013e3181984d91.

    Article  PubMed  Google Scholar 

  141. Cabanillas Stanchi, K. M., Bruchelt, G., Handgretinger, R., & Holzer, U. (2015). Nifurtimox reduces N-Myc expression and aerobic glycolysis in neuroblastoma. Cancer Biology & Therapy, 16(9), 1353–1363. https://doi.org/10.1080/15384047.2015.1070987.

    Article  CAS  Google Scholar 

  142. Kong, E., Zhu, J., Wu, W., Ren, H., Jiao, X., Wang, H., et al. (2019). Nifurtimox inhibits the progression of neuroblastoma in vivo. Journal of Cancer, 10(10), 2194–2204. https://doi.org/10.7150/jca.27851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bassiri, H., Benavides, A., Haber, M., Gilmour, S. K., Norris, M. D., & Hogarty, M. D. (2015). Translational development of difluoromethylornithine (DFMO) for the treatment of neuroblastoma. Translational pediatrics, 4(3), 226–238. https://doi.org/10.3978/j.issn.2224-4336.2015.04.06.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Lozier, A. M., Rich, M. E., Grawe, A. P., Peck, A. S., Zhao, P., Chang, A. T.-T., et al. (2015). Targeting ornithine decarboxylase reverses the LIN28/Let-7 axis and inhibits glycolytic metabolism in neuroblastoma. Oncotarget, 6(1), 196–206. https://doi.org/10.18632/oncotarget.2768.

    Article  PubMed  Google Scholar 

  145. Larsson, K., Kock, A., Idborg, H., Arsenian Henriksson, M., Martinsson, T., Johnsen, J. I., et al. (2015). COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proceedings of the National Academy of Sciences of the United States of America, 112(26), 8070–8075. https://doi.org/10.1073/pnas.1424355112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mooney, M. R., Geerts, D., Kort, E. J., & Bachmann, A. S. (2019). Anti-tumor effect of sulfasalazine in neuroblastoma. Biochemical Pharmacology, 162, 237–249. https://doi.org/10.1016/j.bcp.2019.01.007.

    Article  CAS  PubMed  Google Scholar 

  147. Komar-Stossel, C., Gross, E., Dery, E., Corchia, N., Meir, K., Fried, I., et al. (2014). TL-118 and gemcitabine drug combination display therapeutic efficacy in a MYCN amplified orthotopic neuroblastoma murine model—evaluation by MRI. PLoS One, 9(3), e90224–e90224. https://doi.org/10.1371/journal.pone.0090224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Campos-Arroyo, D., Maldonado, V., Bahena, I., Quintanar, V., Patiño, N., Carlos Martinez-Lazcano, J., et al. (2016). Probenecid sensitizes neuroblastoma cancer stem cells to cisplatin. Cancer Investigation, 34(3), 155–166. https://doi.org/10.3109/07357907.2016.1139717.

    Article  CAS  PubMed  Google Scholar 

  149. Rodríguez-Hernández, C. J., Mateo-Lozano, S., García, M., Casalà, C., Briansó, F., Castrejón, N., et al. (2016). Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens. Oncotarget, 7(13), 16112–16129. https://doi.org/10.18632/oncotarget.7448.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Nishio, N., Fujita, M., Tanaka, Y., Maki, H., Zhang, R., Hirosawa, T., et al. (2012). Zoledronate sensitizes neuroblastoma-derived tumor-initiating cells to cytolysis mediated by human γδ T cells. Journal of Immunotherapy, 35(8).

  151. Alizadeh, J., Zeki, A. A., Mirzaei, N., Tewary, S., Rezaei Moghadam, A., Glogowska, A., et al. (2017). Mevalonate Cascade inhibition by simvastatin induces the intrinsic apoptosis pathway via depletion of isoprenoids in tumor cells. Scientific Reports, 7, 44841–44841. https://doi.org/10.1038/srep44841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Su, C., Shi, A., Cao, G., Tao, T., Chen, R., Hu, Z., et al. (2015). Fenofibrate suppressed proliferation and migration of human neuroblastoma cells via oxidative stress dependent of TXNIP upregulation. Biochemical and Biophysical Research Communications, 460(4), 983–988. https://doi.org/10.1016/j.bbrc.2015.03.138.

    Article  CAS  PubMed  Google Scholar 

  153. Costa, D., Gigoni, A., Würth, R., Cancedda, R., Florio, T., & Pagano, A. (2014). Metformin inhibition of neuroblastoma cell proliferation is differently modulated by cell differentiation induced by retinoic acid or overexpression of NDM29 non-coding RNA. Cancer Cell International, 14, 59–59. https://doi.org/10.1186/1475-2867-14-59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kumar, A., Al-Sammarraie, N., DiPette, D. J., & Singh, U. S. (2014). Metformin impairs Rho GTPase signaling to induce apoptosis in neuroblastoma cells and inhibits growth of tumors in the xenograft mouse model of neuroblastoma. Oncotarget, 5(22), 11709–11722. https://doi.org/10.18632/oncotarget.2606.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Vujic, I., Sanlorenzo, M., Posch, C., Esteve-Puig, R., Yen, A. J., Kwong, A., et al. (2015). Metformin and trametinib have synergistic effects on cell viability and tumor growth in NRAS mutant cancer. Oncotarget, 6(2), 969–978. https://doi.org/10.18632/oncotarget.2824.

    Article  PubMed  Google Scholar 

  156. Mouhieddine, T. H., Nokkari, A., Itani, M. M., Chamaa, F., Bahmad, H., Monzer, A., et al. (2015). Metformin and Ara-a effectively suppress brain cancer by targeting cancer stem/progenitor cells. Frontiers in Neuroscience, 9, 442–442. https://doi.org/10.3389/fnins.2015.00442.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Binlateh, T., Tanasawet, S., Rattanaporn, O., Sukketsiri, W., & Hutamekalin, P. (2019). Metformin promotes neuronal differentiation via crosstalk between Cdk5 and Sox6 in neuroblastoma cells. Evidence-based complementary and alternative medicine : eCAM, 2019, 1765182–1765182. https://doi.org/10.1155/2019/1765182.

    Article  Google Scholar 

  158. Vella, S., Conaldi, P. G., Florio, T., & Pagano, A. (2016). PPAR gamma in neuroblastoma: the translational perspectives of hypoglycemic drugs. PPAR Research, 2016, 3038164–3038164. https://doi.org/10.1155/2016/3038164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wolter, J. K., Wolter, N. E., Blanch, A., Partridge, T., Cheng, L., Morgenstern, D. A., et al. (2014). Anti-tumor activity of the beta-adrenergic receptor antagonist propranolol in neuroblastoma. Oncotarget, 5(1), 161–172. https://doi.org/10.18632/oncotarget.1083.

    Article  PubMed  Google Scholar 

  160. Vella, S., Penna, I., Longo, L., Pioggia, G., Garbati, P., Florio, T., et al. (2015). Perhexiline maleate enhances antitumor efficacy of cisplatin in neuroblastoma by inducing over-expression of NDM29 ncRNA. Scientific Reports, 5, 18144–18144. https://doi.org/10.1038/srep18144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gu, S., Tian, Y., Chlenski, A., Salwen, H. R., Lu, Z., Raj, J. U., et al. (2012). Valproic acid shows a potent antitumor effect with alteration of DNA methylation in neuroblastoma. Anti-Cancer Drugs, 23(10), 1054–1066. https://doi.org/10.1097/CAD.0b013e32835739dd.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shah, R. D., Jagtap, J. C., Mruthyunjaya, S., Shelke, G. V., Pujari, R., Das, G., et al. (2013). Sodium valproate potentiates staurosporine-induced apoptosis in neuroblastoma cells via Akt/survivin independently of HDAC inhibition. Journal of Cellular Biochemistry, 114(4), 854–863. https://doi.org/10.1002/jcb.24422.

    Article  CAS  PubMed  Google Scholar 

  163. Groh, T., Hrabeta, J., Ashraf Khalil, M., Doktorova, H., Eckschlager, T., & Stiborova, M. (2015). The synergistic effects of DNA-damaging drugs cisplatin and etoposide with a histone deacetylase inhibitor valproate in high-risk neuroblastoma cells. International Journal of Oncology, 47(1), 343–352.

    Article  CAS  PubMed  Google Scholar 

  164. Fang, E., Wang, J., Hong, M., Zheng, L., & Tong, Q. (2019). Valproic acid suppresses Warburg effect and tumor progression in neuroblastoma. Biochemical and Biophysical Research Communications, 508(1), 9–16. https://doi.org/10.1016/j.bbrc.2018.11.103.

    Article  CAS  PubMed  Google Scholar 

  165. Bayat Mokhtari, R., Baluch, N., Ka Hon Tsui, M., Kumar, S., S Homayouni, T., Aitken, K., et al. (2017). Acetazolamide potentiates the anti-tumor potential of HDACi, MS-275, in neuroblastoma. BMC Cancer, 17(1), 156–156, https://doi.org/10.1186/s12885-017-3126-7.

  166. Bilir, A., Erguven, M., Yazihan, N., Aktas, E., Oktem, G., & Sabanci, A. (2010). Enhancement of vinorelbine-induced cytotoxicity and apoptosis by clomipramine and lithium chloride in human neuroblastoma cancer cell line SH-SY5Y. Journal of Neuro-Oncology, 100(3), 385–395. https://doi.org/10.1007/s11060-010-0209-6.

    Article  CAS  PubMed  Google Scholar 

  167. Zheng, X., Naiditch, J., Czurylo, M., Jie, C., Lautz, T., Clark, S., et al. (2013). Differential effect of long-term drug selection with doxorubicin and vorinostat on neuroblastoma cells with cancer stem cell characteristics. Cell Death & Disease, 4(7), e740–e740. https://doi.org/10.1038/cddis.2013.264.

    Article  CAS  Google Scholar 

  168. Sidarovich, V., De Mariano, M., Aveic, S., Pancher, M., Adami, V., Gatto, P., et al. (2018). A high-content screening of anticancer compounds suggests the multiple tyrosine kinase inhibitor Ponatinib for repurposing in neuroblastoma therapy. Molecular Cancer Therapeutics, 17(7), 1405–1415. https://doi.org/10.1158/1535-7163.mct-17-0841.

    Article  CAS  PubMed  Google Scholar 

  169. Bahmad, H. F., Mouhieddine, T. H., Chalhoub, R. M., Assi, S., Araji, T., Chamaa, F., et al. (2018). The Akt/mTOR pathway in cancer stem/progenitor cells is a potential therapeutic target for glioblastoma and neuroblastoma. Oncotarget, 9(71), 33549-33561, https://doi.org/10.18632/oncotarget.26088.

  170. Cerna, T., Hrabeta, J., Eckschlager, T., Frei, E., Schmeiser, H. H., Arlt, V. M., et al. (2018). The histone deacetylase inhibitor valproic acid exerts a synergistic cytotoxicity with the DNA-damaging drug Ellipticine in neuroblastoma cells. International Journal of Molecular Sciences, 19(1), 164. https://doi.org/10.3390/ijms19010164.

    Article  CAS  PubMed Central  Google Scholar 

  171. Chen, Y. U. N., Tsai, Y.-H., & Tseng, S.-H. (2011). Combined Valproic acid and celecoxib treatment induced synergistic cytotoxicity and apoptosis in neuroblastoma cells. Anticancer Research, 31(6), 2231–2239.

    CAS  PubMed  Google Scholar 

  172. He, W., Wu, Y., Tang, X., Xia, Y., He, G., Min, Z., et al. (2016). HDAC inhibitors suppress c-Jun/Fra-1-mediated proliferation through transcriptionally downregulating MKK7 and Raf1 in neuroblastoma cells. Oncotarget, 7(6), 6727–6747. https://doi.org/10.18632/oncotarget.6797.

    Article  PubMed  Google Scholar 

  173. Dedoni, S., Marras, L., Olianas, M. C., Ingianni, A., & Onali, P. (2019). Downregulation of TrkB expression and signaling by Valproic acid and other histone deacetylase inhibitors. Journal of Pharmacology and Experimental Therapeutics, 370(3), 490. https://doi.org/10.1124/jpet.119.258129.

    Article  CAS  PubMed  Google Scholar 

  174. Khalil, M. A., Hraběta, J., Groh, T., Procházka, P., Doktorová, H., & Eckschlager, T. (2016). Valproic acid increases CD133 positive cells that show low sensitivity to cytostatics in neuroblastoma. PLoS One, 11(9), e0162916–e0162916. https://doi.org/10.1371/journal.pone.0162916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lange, I., Espinoza-Fuenzalida, I., Ali, M. W., Serrano, L. E., & Koomoa, D.-L. T. (2017). FTY-720 induces apoptosis in neuroblastoma via multiple signaling pathways. Oncotarget, 8(66), 109985–109999. https://doi.org/10.18632/oncotarget.22452.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kanno, H., Nishihara, H., Oikawa, M., Ozaki, Y., Murata, J., Sawamura, Y., et al. (2012). Expression of O6-methylguanine DNA methyltransferase (MGMT) and immunohistochemical analysis of 12 pineal parenchymal tumors. Neuropathology, 32(6), 647–653. https://doi.org/10.1111/j.1440-1789.2012.01315.x.

    Article  PubMed  Google Scholar 

  177. DeBoer, R., Batjer, H., Marymont, M., Goldman, S., Walker, M., Gottardi-Littell, N., et al. (2009). Response of an adult patient with pineoblastoma to vorinostat and retinoic acid. Journal of Neuro-Oncology, 95(2), 289–292. https://doi.org/10.1007/s11060-009-9921-5.

    Article  PubMed  Google Scholar 

  178. Mohankumar, K. M., Currle, D. S., White, E., Boulos, N., Dapper, J., Eden, C., et al. (2015). An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes. Nature Genetics, 47(8), 878–887. https://doi.org/10.1038/ng.3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nimmervoll, B. V., Boulos, N., Bianski, B., Dapper, J., DeCuypere, M., Shelat, A., et al. (2018). Establishing a preclinical multidisciplinary board for brain tumors. Clinical Cancer Research, 24(7), 1654. https://doi.org/10.1158/1078-0432.CCR-17-2168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all members in Dr. Abou-Kheir’s Laboratory (The WAK Lab) and Dr. Abou-Antoun’s Laboratory for their help on this work.

Author information

Authors and Affiliations

Authors

Contributions

WAK and TAA conceived the concept and idea of the present review. HFB, TAA, and WAK worked on the study design strategy and selected the topics to be discussed. HFB and MKE did literature searches and screened titles and abstracts for relevance. HFB, MKE, TEZ, and JB abstracted the data from the eligible full text articles, analyzed and interpreted the data, and drafted the manuscript. TAA and WAK critically revised the manuscript with input from the entire team. All authors have read and approved the final draft.

Corresponding authors

Correspondence to Tamara Abou-Antoun or Wassim Abou-Kheir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahmad, H.F., Elajami, M.K., El Zarif, T. et al. Drug repurposing towards targeting cancer stem cells in pediatric brain tumors. Cancer Metastasis Rev 39, 127–148 (2020). https://doi.org/10.1007/s10555-019-09840-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-019-09840-2

Keywords

Navigation