Skip to main content

Advertisement

Log in

Effect of Chlorine on the Chemisorptive Properties and Ammonia Synthesis Activity of Alumina-Supported Ru Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Ru/Al2O3 catalysts were prepared to study the effect of the amount and the origin of residual chlorine on chemisorptive property and the ammonia synthesis activity. The catalysts were characterized by X-ray fluorescence, CO chemisorption, transmission Electron Microscopy, X-ray photoelectron spectroscopy, hydrogen temperature-programmed desorption, hydrogen temperature-programmed reduction. It is found that the presence of chlorine had a limited impact on Ru particle size. Residual chlorine originated from RuCl3 would not influence on Ru 3d5/2 binding energy, but chlorine from HCl solution significantly increased Ru 3d5/2 binding energy. Regardless of their source, the presence of chlorine severely reduced the amount of hydrogen species corresponding to the desorption peak at medium temperature. The inhibition effect of chlorine on hydrogen adsorption was more strong for Ru catalyst with residual chlorine from the RuCl3 precursor. With a similar amount of residual chlorine, the catalysts with chlorine originated from the RuCl3 precursor showed much lower catalytic activity than those prepared by impregnation of HCl. These results suggest that chlorine mainly affects the catalytic properties of alumina supported Ru catalysts for ammonia synthesis by selective site blocking.

Graphical Abstract

Chlorine affects on the sites at the metal/support interface for Ru/Al2O3 catalysts, and then hydrogen adsorption and ammonia synthesis both are suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aika K, Tamaru K (1995) In: Nielsen A (ed) Ammonia: catalysis and manufacture. Springer, Berlin, p 103

  2. Bielawa H, Hinrichsen O, Birkner A, Muhler M (2001) Angew Chem Int Ed 40:1061

    Article  CAS  Google Scholar 

  3. Schlogl R (2003) Angew Chem Int Ed 42:2004

    Article  Google Scholar 

  4. Zeng HS, Inazu K, Aika K (2001) Appl Catal A 219:235

    Article  CAS  Google Scholar 

  5. Murata S, Aika KI (1992) Appl Catal A 82:1

    Article  CAS  Google Scholar 

  6. Murata S, Aika K (1992) J Catal 136:110

    Article  CAS  Google Scholar 

  7. Rossetti I, Forni L (2005) Appl Catal A 282:315

    Article  CAS  Google Scholar 

  8. Moggi P, Albanesi G, Predieri G, Spoto G (1995) Appl Catal A 123:145

    Article  CAS  Google Scholar 

  9. Shiflett WK, Dumesic JA (1981) Ind Eng Chem Fund 20:246

    Article  CAS  Google Scholar 

  10. Lu K, Tatarchuk BJ (1987) J Catal 106:166

    Article  CAS  Google Scholar 

  11. Lu K, Tatarchuk BJ (1987) J Catal 106:176

    Article  CAS  Google Scholar 

  12. Rosowski F, Hornung A, Hinrichsen O, Herein D, Muhler M, Ertl G (1997) Appl Catal A 151:443

    Article  CAS  Google Scholar 

  13. Rambeau G, Amariglio H (1981) J Catal 72:1

    Article  CAS  Google Scholar 

  14. Narita T, Miura H, Ohira M, Hondou H, Sugiyama K, Matsuda T, Gonzalez RD (1987) Appl Catal 32:185

    Article  CAS  Google Scholar 

  15. Iyagba ET, Eddy Hoost T, Nwalor JU, Goodwin JG (1990) J Catal 123:1

    Article  CAS  Google Scholar 

  16. Miyazaki A, Balint L, Aika K, Nakano Y (2001) J Catal 204:364

    Article  CAS  Google Scholar 

  17. Seetharamulu P, Kumar VS, Padmasri AH, Raju BD, Rao KSR (2007) J Mol Catal A Chem 263:253

    Article  CAS  Google Scholar 

  18. Lin B, Wang R, Lin J, Du S, Yu X, Wei K (2007) Catal Commun 8:1838

    Article  CAS  Google Scholar 

  19. Lin B, Wang R, Yu X, Lin J, Xie F, Wei K (2008) Catal Lett 124:178

    Article  CAS  Google Scholar 

  20. Lin B, Wang R, Lin J, Ni J, Wei K (2011) Catal Commun 12:553

    Article  CAS  Google Scholar 

  21. Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corp., Norcross, p 70

    Google Scholar 

  22. Borodzinski A, Bonarowska M (1997) Langmuir 13:5613

    Article  CAS  Google Scholar 

  23. Wang X, Ni J, Lin B, Wang R, Lin J, Wei K (2010) Catal Commun 12:251

    Article  CAS  Google Scholar 

  24. Yu X, Lin B, Gong B, Lin J, Wang R, Wei K (2008) Catal Lett 124:168

    Article  CAS  Google Scholar 

  25. Gong B, Wang R, Lin B, Xie F, Yu X, Wei K (2008) Catal Lett 122:287

    Article  CAS  Google Scholar 

  26. Mazzieri V, Coloma-Pascual F, Arcoya A, L’Argentiere PC, Figoli NS (2003) Appl Surf Sci 210:222

    Article  CAS  Google Scholar 

  27. Mieth JA, Schwarz JA (1989) Appl Catal 55:137

    Article  CAS  Google Scholar 

  28. Hua W, Xia Y, Yue Y, Gao Z (2000) J Catal 196:104

    Article  CAS  Google Scholar 

  29. Yamamoto T, Tanaka T, Matsuyama T, Funabiki T, Yoshida S (2001) J Phys Chem B 105:1908

    Article  CAS  Google Scholar 

  30. Hussein GAM (1996) J Anal Appl Pyrol 37:111

    Article  CAS  Google Scholar 

  31. Narita T, Miura H, Sugiyama K, Matsuda T, Gonzalez RD (1987) J Catal 103:492

    Article  CAS  Google Scholar 

  32. Nawdali M, Bianchi D (2002) Appl Catal A 231:45

    Article  CAS  Google Scholar 

  33. Chan HYH, Takoudis CG, Weaver MJ (1997) J Catal 172:336

    Article  CAS  Google Scholar 

  34. Okal J, Zawadzki M, Tylus W (2011) Appl Catal B Environ 101:548

    Article  CAS  Google Scholar 

  35. DeKoven BM, Hagans PL (1986) Appl Surf Sci 27:199

    Article  CAS  Google Scholar 

  36. Bou M, Martin JM, Le Mogne T, Vovelle L (1991) Appl Surf Sci 47:149

    Article  CAS  Google Scholar 

  37. Liao HM, Sodhi RNS, Coyle TW (1993) J Vac Sci Technol A 11:2681

    Article  CAS  Google Scholar 

  38. Larichev YV, Moroz BL, Zaikovskii VI, Yunusov SM, Kalyuzhnaya ES, Shur VB, Bukhtiyarov VI (2007) J Phys Chem C 111:9427

    Article  CAS  Google Scholar 

  39. Briggs D, Seah MP (1993) Practical surface analysis, vol 1, 2nd edn. Wiley, Chichester

    Google Scholar 

  40. Santacesaria E, Gelosa D, Carrà S (1977) Ind Eng Chem Prod Res Dev 16:45

    Article  CAS  Google Scholar 

  41. Bajaj SR, Pal P, Gupta JK, Sharma LD, Dhar GM, Rao TSRP (1998) Stud Surf Sci Catal 113:365

    Article  CAS  Google Scholar 

  42. Aika K, Ohya A, Ozaki A, Inoue Y, Yasumori I (1985) J Catal 92:305

    Article  CAS  Google Scholar 

  43. Muhler M, Rosowski F, Hinrichsen O, Hornung A, Ertl G (1996) Stud Surf Sci Catal 101:317

    Article  CAS  Google Scholar 

  44. Lin HY, Chen YW (2004) Thermochim Acta 419:283

    Article  CAS  Google Scholar 

  45. Panagiotopoulou P, Kondarides DI (2009) J Catal 267:57

    Article  CAS  Google Scholar 

  46. Conner WC, Falconer JL (1995) Chem Rev 95:759

    Article  CAS  Google Scholar 

  47. Miller JT, Meyers BL, Modica FS, Lane GS, Vaarkamp M, Koningsberger DC (1993) J Catal 143:395

    Article  CAS  Google Scholar 

  48. Kondarides DI, Verykios XE (1998) J Catal 174:52

    Article  CAS  Google Scholar 

  49. Okal J, Zawadzki M, Kepinski L, Krajczyk L, Tylus W (2007) Appl Catal A 319:202

    Article  CAS  Google Scholar 

  50. Musso JC, Parera JM (1987) Appl Catal 30:81

    Article  CAS  Google Scholar 

  51. Murata S, Aika K, Onishi T (1990) Chem Lett 19:1067

    Article  Google Scholar 

  52. Capitan MJ, Malet P, Centeno MA, Munoz-Paez A, Carrizosa I, Odriozola JA (1993) J Phys Chem 97:9233

    Article  CAS  Google Scholar 

  53. Mo X, Gao J, Umnajkaseam N, Goodwin JG Jr (2009) J Catal 267:167

    Article  CAS  Google Scholar 

  54. Aika K, Kumasaka M, Oma T, Kato O, Matsuda H, Watanabe N, Yamazaki K, Ozaki A, Onishi T (1986) Appl Catal 28:57

    Article  CAS  Google Scholar 

  55. Siporin SE, Davis RJ (2004) J Catal 225:359

    Article  CAS  Google Scholar 

  56. Dahl S, Törnqvist E, Chorkendorff I (2000) J Catal 192:381

    Article  CAS  Google Scholar 

  57. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Tornqvist E, Norskov JK (1999) Phys Rev Lett 83:1814

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from National Natural Science Foundation of China (20576021), National Key Technology R&D Program of China (2007BAE08B02) and Science and Technology Development Foundation of Fuzhou University (2008-XY-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemei Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1407 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, B., Wang, R., Lin, J. et al. Effect of Chlorine on the Chemisorptive Properties and Ammonia Synthesis Activity of Alumina-Supported Ru Catalysts. Catal Lett 141, 1557–1568 (2011). https://doi.org/10.1007/s10562-011-0658-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0658-3

Keywords

Navigation