Skip to main content

Advertisement

Log in

Enhanced Hydrogen Evolution Reaction of Amorphous MoSx via Carbon Depositing of TiO2 Nanotube Arrays

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Carbon depositing is carried out at high calcination temperature after TiO2 nanotube arrays (TNAs) produced from anodic oxidation of titanium foils is impregnated in glucose aqueous solution. The formed TNAs-C is then loaded with MoSx via electrochemical deposition to prepare MoSx/TNAs-C electrodes. The microstructure, morphology, and chemical composition of the samples are analyzed with XRD, XPS, EDS, SEM, and TEM. LSV, CV, Tafel, and EIS are conducted to provide electrochemical properties. Experimental results illustrate that carbonization of TNAs elevates the electron transport between the electrode and electrolyte, and within the electrode. The electrochemical desorption on the electrode surface is enhanced to promote the catalytic efficiency. Compared to MoSx/TNAs, MoSx/TNAs-C(0.2) offers overpotentials of 109 and 139 mV at current densities of –10 and –20 mA cm–2, decreases of 33 and 42 mV, respectively. The double layer capacitance Cdl of 43 mF cm–2, more than double that of MoSx/TNAs (20 mF cm–2). The stability test of the electrode shows no apparent decay.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balat M (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrogen Energy 33:4013–4029

    CAS  Google Scholar 

  2. Morales-Guio CG, Hu X (2014) Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc Chem Res 47:2671–2681

    CAS  PubMed  Google Scholar 

  3. Pham KC, Chang YH, McPhail DS, Mattevi C, Wee AT, Chua DH (2016) Amorphous molybdenum sulfide on graphene-carbon nanotube hybrids as highly active hydrogen evolution reaction catalysts. ACS Appl Mater Interfaces 8:5961–5971

    CAS  PubMed  Google Scholar 

  4. Hu KH, Hu XG, Sun XJ (2010) Morphological effect of MoS2 nanoparticles on catalytic oxidation and vacuum lubrication. Appl Surf Sci 256:2517–2523

    CAS  Google Scholar 

  5. Zhao X, Zhua H, Yang XR (2014) Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution. Nanoscale 6:10680–10685

    CAS  PubMed  Google Scholar 

  6. Nolan H, McEvoy N, O’Brien M, Berner NC, Yim C, Hallam T, McDonald AR, Duesberg GS (2014) Molybdenum disulfide/pyrolytic carbon hybrid electrodes for scalable hydrogen evolution. Nanoscale 6:8185–8191

    CAS  PubMed  Google Scholar 

  7. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nørskov JK (2005) Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. J. Am Chem Soc 127:5308–5309

    CAS  PubMed  Google Scholar 

  8. Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102

    CAS  PubMed  Google Scholar 

  9. Li YP, Yu YF, Huang YF, Nielsen RA, Goddard WA, Li Y, Cao LY (2015) Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. Acs Catal 5:448–455

    CAS  Google Scholar 

  10. Benck JD, Chen ZB, Kuritzky LY, Forman AJ, Jaramillo TF (2012) Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. Acs Catal 2:1916–1923

    CAS  Google Scholar 

  11. Li DJ, Maiti UN, Lim J, Choi DS, Lee WJ, Oh Y, Lee GY, Kim SO (2014) Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett 14:1228–1233

    CAS  PubMed  Google Scholar 

  12. Sang CL, Benck JD, Tsai C, Park J, Sinclair R (2015) Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production. ACS Nano 10:624–632

    Google Scholar 

  13. Ting LRL, Deng YL, Ma L, Zhang YJ, Peterson AA, Yeo BS (2016) Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. Acs Catal 6:861–867

    CAS  Google Scholar 

  14. Xu J, Cui J, Guo C, Zhao Z (2016) Ultrasmall Cu7S4@MoS2hetero-nanoframes with abundant active edge sites for ultrahigh-performance hydrogen evolution. Angewandte Chem Int. Ed. 55:6502–6505

    CAS  Google Scholar 

  15. Gao SY, Wang B, Liu XY, Guo ZH, Liu ZQ, Wang YC (2018) PbTe quantum dots as electron transfer intermediates for the enhanced hydrogen evolution reaction of amorphous MoSx/TiO2 nanotube arrays. Nanoscale 10:10288–10295

    CAS  PubMed  Google Scholar 

  16. Lan W, Li D, Wang W, Liu Z, Chen H, Xu Y (2019) Multi-walled carbon nanotubes reinforced nickel phosphide composite: As an efficient electrocatalyst for hydrogen evolution reaction by one-step powder sintering. Int. J. Hydrog. Energy 45:412–423

    Google Scholar 

  17. Gao S, Wang B, Liu Z (2017) Enhanced hydrogen production of PbTe-PbS/TNAs electrodes modified with ordered mesoporous carbon. J Colloid Interface Sci 504:652–659

    CAS  PubMed  Google Scholar 

  18. Liao W, Wang B, Liu ZQ (2017) Photoelectrochemical hydrogen production at peak efficiency over 10% via PbSe QDs/TiO2 nanotube array photoanodes. I Int J Hydrog Energy 42:10962–10970

    CAS  Google Scholar 

  19. Liu ZQ, Cao XH, Wang B, Xia M, Lin S, Guo ZH, Zhang XM, Gao SY (2017) Coupling thermoelectricity and electrocatalysis for hydrogen production via PbTe-PbS/TiO2 heterojunction. J Power Sources 342:452–459

    CAS  Google Scholar 

  20. Yong L, Peng Y, Wang B, Liu Z (2019) Amorphous NixCoyP-supported TiO2 nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution, Beilstein. J. Nanotechnol 10:62–70

    Google Scholar 

  21. Liu Z, Cao X, Wang B, Xia M, Lin S, Guo Z, Zhang X, Gao S (2017) Coupling thermoelectricity and electrocatalysis for hydrogen production via PbTePbS/TiO2 heterojunction. J. Power Sources 342:452–459

    CAS  Google Scholar 

  22. Liu Z, Zhang X, Wang B, Min X, Wang Y (2018) Amorphous MoSx Coated TiO2 Nanotube Arrays for Enhanced Electrocatalytic Hydrogen Evolution Reaction. J. Phys. Chem. C 122:12589–12597

    CAS  Google Scholar 

  23. Liu ZQ, Zhang XM, Wang B, Xia M, Gao SY, Liu XY, Zavabeti A, Ou JZ, Kalantar-Zadeh K, Wang YC (2018) Amorphous MoSx-Coated TiO2 Nanotube Arrays for Enhanced Electrocatalytic Hydrogen Evolution Reaction. J Phys Chem C 122:12589–12597

    CAS  Google Scholar 

  24. Yang P, Wang B, Liu Z (2018) Towards activation of amorphous MoSx via Cobalt doping for enhanced electrocatalytic hydrogen evolution reaction. Int J Hydrog Energy 43:23109–23117

    CAS  Google Scholar 

  25. Qian L, Du ZL, Yang SY, Jin ZS (2005) Raman study of titania nanotube by soft chemical process. J Mol Struct 749:103–107

    CAS  Google Scholar 

  26. Montes-Moran MA, Young RJ (2002) Raman spectroscopy study of HM carbon fibres: effect of plasma treatment on the interfacial properties of single fibre/epoxy composites-Part I: Fibre characterisation. Carbon 40:845–855

    CAS  Google Scholar 

  27. Delhaes P, Couzi M, Trinquecoste M, Dentzer J, Hamidou H, Vix-Guterl C (2006) A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes. Carbon 44:3005–3013

    CAS  Google Scholar 

  28. Kim YK, Kim MH, Min DH (2011) Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem Commun 47:3195–3197

    CAS  Google Scholar 

  29. Sahnesarayi MK, Sarpoolaky H, Rastegari S (2014) Effect of heat treatment temperature on the performance of nano-TiO2 coating in protecting 316L stainless steel against corrosion under UV illumination and dark conditions. Surf Coat Tech 258:861–870

    Google Scholar 

  30. Lam E, Chong JH, Majid E, Liu YL, Hrapovic S, Leung ACW, Luong JHT (2012) Carbocatalytic dehydration of xylose to furfural in water. Carbon 50:1033–1043

    CAS  Google Scholar 

  31. Pan X, Yang MQ, Fu X, Zhang N, Xu YJ (2013) Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5:3601–3614

    CAS  PubMed  Google Scholar 

  32. Jing LQ, Xin BF, Yuan FL, Xue LP, Wang BQ, Fu HG (2006) Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J Phys Chem B 110:17860–17865

    CAS  PubMed  Google Scholar 

  33. Lin C, Song Y, Cao LX, Chen SW (2013) Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles. Nanoscale 5:4986–4992

    CAS  PubMed  Google Scholar 

  34. Vrubel H, Hu XL (2013) Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving Catalyst. Acs Catal 3:2002–2011

    CAS  Google Scholar 

  35. Vrubel H, Merki D, Hu XL (2012) Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci 5:6136–6144

    CAS  Google Scholar 

  36. Tang ML, Grauer DC, Lassalle-Kaiser B, Yachandra VK, Amirav L, Long JR, Yano J, Alivisatos AP (2011) Structural and electronic study of an amorphous mos3 hydrogen-generation catalyst on a quantum-controlled photosensitizer. Angew Chem Int Ed 50:10203–10207

    CAS  Google Scholar 

  37. Ge XB, Chen LY, Zhang L, Wen YR, Hirata A, Chen MW (2014) Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-efficiency hydrogen production. Adv Mater 26:3100–3104

    CAS  PubMed  Google Scholar 

  38. Chang YH, Wu FY, Chen TY, Hsu CL, Chen CH, Wiryo F, Wei KH, Chiang CY, Li LJ (2014) Three-dimensional molybdenum sulfide sponges for electrocatalytic water splitting. Small 10:895–900

    CAS  PubMed  Google Scholar 

  39. Lu AY, Yang XL, Tseng CC, Min SX, Lin SH, Hsu CL, Li HN, Idriss HC, Kuo JL, Huang KW, Li LJ (2016) High-sulfur-vacancy amorphous molybdenum sulfide as a high current electrocatalyst in hydrogen evolution. Small 12:5530–5537

    CAS  PubMed  Google Scholar 

  40. Kibsgaard J, Jaramillo TF, Besenbacher F (2014) Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. Nat Chem 6:248–253

    CAS  PubMed  Google Scholar 

  41. Song SD, Li WJ, Deng YP, Ruan YL, Zhang YN, Qin XH, Chen ZW (2020) TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries. Nano Energy. https://doi.org/10.1016/j.nanoen.2019.104208

    Article  Google Scholar 

  42. Ye KH, Liu ZQ, Xu CW, Li N, Chen YB, Su YZ (2013) MnO2/reduced graphene oxide composite as high-performance electrode for flexible supercapacitors. Inorg Chem Commun 30:1–4

    Google Scholar 

  43. Yang XX, Cao CD, Erickson L, Hohn K, Maghirang R, Klabunde K (2008) Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. J Catal 260:128–133

    CAS  Google Scholar 

  44. Zabek P, Eberl J, Kisch H (2009) On the origin of visible light activity in carbon-modified titania. Photoch Photobio Sci 8:264–269

    CAS  Google Scholar 

  45. Zhao L, Chen XF, Wang XC, Zhang YJ, Wei W, Sun YH, Antonietti M, Titirici MM (2010) One-step solvothermal synthesis of a Carbon@TiO2 Dyade structure effectively promoting visible-light photocatalysis. Adv Mater 22:3317–3321

    CAS  PubMed  Google Scholar 

  46. Eftekhari A (2017) Electrocatalysts for hydrogen evolution reaction. Int J Hydrog Energy 42:11053–11077

    CAS  Google Scholar 

  47. Eftekhari A (2017) From pseudocapacitive redox to intermediary adsorption in oxygen evolution reaction. Mater Today Chem 4:117–132

    Google Scholar 

  48. Wu ZZ, Fang BZ, Bonakdarpour A, Sun AK, Wilkinson DP, Wang DZ (2012) WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Appl Catal B-Environ 125:59–66

    CAS  Google Scholar 

  49. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    CAS  PubMed  Google Scholar 

  50. Yu HG, Xiao PA, Wang P, Yu JG (2016) Amorphous molybdenum sulfide as highly efficient electron-cocatalyst for enhanced photocatalytic H2 evolution. Appl Catal B-Environ 193:217–225

    CAS  Google Scholar 

  51. Vrubel H, Moehl T, Gratzel M, Hu X (2013) Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chem Commun (Camb) 49:8985–8987

    CAS  Google Scholar 

  52. Liu ZY, Pesic B, Raja KS, Rangaraju RR, Misra M (2009) Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays. Int J Hydrog Energy 34:3250–3257

    CAS  Google Scholar 

  53. Zhang JW, Yan XX, Zhang JW, Cai W, Wu ZS, Zhang ZJ (2012) Preparation and electrochemical performance of TiO2/C composite nanotubes as anode materials of lithium-ion batteries. J Power Sources 198:223–228

    CAS  Google Scholar 

  54. Shinde SS, Sami A, Lee JH (2015) Nitrogen- and phosphorus-doped nanoporous graphene/graphitic carbon nitride hybrids as efficient electrocatalysts for hydrogen evolution. ChemCatChem 7:3873–3880

    CAS  Google Scholar 

  55. Merki D, Vrubel H, Rovelli L, Fierro S, Hu XL (2012) Fe Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem Sci 3:2515–2525

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Yang, P., Wang, B. et al. Enhanced Hydrogen Evolution Reaction of Amorphous MoSx via Carbon Depositing of TiO2 Nanotube Arrays. Catal Lett 152, 679–688 (2022). https://doi.org/10.1007/s10562-021-03628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03628-2

Keywords

Navigation