Skip to main content
Log in

13C NMR analysis of cellulose samples from different preparation methods

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Alpha-cellulose is a part of the wooden material that preserves isotopic composition during tree-growth, and therefore provides important indirect data for paleoclimatological studies. For this reason, it is exceptionally important to extract the alpha-cellulose component from plants, e.g. from tree rings of wood. Since the cell wall of plant cells consists of multicomponent polysaccharides, the extraction of cellulose from wood is not an obvious task. In this paper, we describe, evaluate and compare nine methods, based on the literature and experimental observations, for obtaining cellulose from tree rings of wood. We show that the distortionless enhancement by polarization transfer (DEPT-135) variant of liquid-state 13C NMR spectroscopy is a powerful analytical method for monitoring the preparation process. Trifluoroacetic acid was applied as solvent for the NMR analysis. We proved that all the preparation methods give pure cellulose samples without hemicellulose and lignin content, and we propose methods resulting in non-fragmented cellulose. 13C and 18O isotope ratio measurements have shown that all the applied extraction methods result in similar isotope ratios, thus they are suitable for paleoclimatological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

C1–C6:

Carbon atoms of the monomer unit of the cellulose molecule

DEPT-135:

Distortionless enhancement by polarization transfer

ESI:

Electronic Supplementary Information

IAEA:

International Atomic Energy Agency

NMR:

Nuclear magnetic resonance

TFA:

Trifluoroacetic acid

TIRI:

Third International Radiocarbon Intercomparison

VPDB:

Vienna Pee Dee Belemnite

VSMOW:

Vienna Standard Mean Ocean Water

References

  • Boettger T, Haupt M, Knöller K, Weise SM, Waterhouse JS, Rinne KT, Loader NJ, Sonninen E, Jungner H, Masson-Delmotte V, Stievenard M, Guillemin MT, Pierre M, Pazdur A, Leuenberger M, Filot M, Saurer M, Reynolds CE, Helle G, Schleser GH (2007) Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O and nonexchangeable δ2H values in cellulose, sugar and starch: an interlaboratory comparison. Anal Chem 79(12):4603–4612

    Article  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

  • Cain WF, Suess HE (1976) Carbon 14 in tree rings. J Geophys Res 81(21):3688–3694

    Article  CAS  Google Scholar 

  • Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    CAS  Google Scholar 

  • Cullen LE, Grierson PF (2006) Is cellulose extraction necessary for developing stable carbon and oxygen isotopes chronologies from Callitris glaucophylla? Palaeogeogr Palaeoclimatol Palaeoecol 236:206–216

    Article  Google Scholar 

  • Cullen LE, MacFarlane C (2005) Comparison of cellulose extraction methods for analysis of stable isotope ratios of carbon and oxygen in plant material. Tree Physiol 25:563–569

    Article  CAS  Google Scholar 

  • Ebringerová A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67

    Article  Google Scholar 

  • Epstein S, Yapp JC, Hall HJ (1976) The determination of the D/H ratio of non-exchangeable hydrogen in cellulose extracted from aquatic and land plants. Earth and Planet Sci Lett 30(2):241–251

    Article  CAS  Google Scholar 

  • Feng X, Epstein S (1995) Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochim Cosmochim Acta 59(12):2599–2608

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Green JW, Whistler RL (1963) Methods of carbohydrate chemistry. Academic Press, New York, pp 9–21

  • Hasegawa M, Isogai A, Onabe F, Usuda M (1992) Dissolving states of cellulose and chitosan in trifluoroacetic acid. J Appl Polym Sci 45:1857–1863

    Article  CAS  Google Scholar 

  • Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry: a mini review. Polímeros 15(2):84–90

    Article  CAS  Google Scholar 

  • Jackson MG (1977) The alkali treatment of straws—review article. Anim Feed Sci Technol 2:105–130

    Article  Google Scholar 

  • Jin H, Zha C, Gu (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res 342:851–858

    Article  CAS  Google Scholar 

  • Landucci LL (1991) Application of modern liquid-state NMR to lignin characterization I. One-dimensional spectral editing techniques. Holzforschung 45:55–60

    Article  CAS  Google Scholar 

  • Lawrence JR, White JWC (1984) Growing-season precipitation from D/H ratios of eastern white-pine. Nature 311:558–560

    Article  Google Scholar 

  • Liebert T (2010) Cellulose solvents—remarkable history, brightfuture. ACS Symposium Series

  • Liebert T, Schnabelrauch M, Klemm D, Erler U (1994) Readily hydrolysable cellulose esters as intermediates for the regioselective derivatization of cellulose; II. Soluble, highly substituted cellulose trifluoroacetates. Cellulose 1:249–258

    Article  CAS  Google Scholar 

  • Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) An improved technique for the batch processing of small wholewood samples to α-cellulose. Chem Geol 136(3–4):313–317

    Article  CAS  Google Scholar 

  • Long A, Arnold LD, Damon PE, Ferguson CW, Lerman JC, Wilson AT (1979) Radial translocation of carbon in bristlecone pine. Radiocarbon dating. In: Proceedings of the ninth international conference, University of California Press, Los Angeles

  • Maunu S, Liitiä T, Kauliomäki S, Hortling B, Sundquist J (2000) 13C CPMAS NMR investigations of cellulose polymorphs in different pulps. Cellulose 7:147–159

    Article  CAS  Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quatern Sci Rev 23:771–801

    Article  Google Scholar 

  • Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559

    Article  Google Scholar 

  • Ovenall DW, Chang JJ (1977) Carbon-13 NMR of fluorinated compounds using wide-band fluorine decoupling. J Magn Reson 25:361–372

    CAS  Google Scholar 

  • Pérez J, Munoz-Dorado J, De la Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  Google Scholar 

  • Ralph S, Landucci L, Ralph J (2001) NMR database of lignin and cell wall model compounds. Cooperative effort between the US forest products laboratory and the US dairy forage research center. Agricultural Research Service

  • Richard B, Quilés F, Carteret C, Brendel O (2014) Infrared spectroscopy and multivariate analysis to appraise α-cellulose extracted from wood for stable carbon isotope measurements. Chem Geol 381:168–179

    Article  CAS  Google Scholar 

  • Roden JS, Ehleringer JR (2000) Hydrogen and oxygen isotope ratios of tree ring cellulose for field-grown riparian trees. Oecologia 123:481–489

    Article  Google Scholar 

  • SDBSWeb http://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, 09.06.2013)

  • Sensuła BM, Pazdur A, Bickerton J, Derrick PJ (2011) Probing palaeoclimatology through quantitation by mass spectrometry of the products of enzyme hydrolysis of α-cellulose. Cellulose 18(2):461–468

    Article  Google Scholar 

  • Stark S, Statham PJ, Stanley R, Jenkins WJ (2005) Using tree ring cellulose as tool to estimate past tritium inputs to the ocean. Earth Planet Sci Lett 237:341–353

    Article  CAS  Google Scholar 

  • Sternberg LSLO (2009) Oxygen stable isotope ratios of tree-ring cellulose: the next phase of understanding. Res Rev, New Phytol 181(3):553–562

    Article  Google Scholar 

  • Sun X-F, Jing Z, Fowler P, Wu Y, Rajaratnam M (2011) Structural characterization and isolation of lignin and hemicelluloses from barley straw. Ind Crops Prod 33(3):588–598. doi:10.1016/j.indcrop.2010.12.005

    Article  CAS  Google Scholar 

  • Vető I, Futó I, Horváth I, Zs Szántó (2004) Late, deep fermentative methanogenesis as reflected by the H-C-O-S isotopy of the methane-water system in deep aquifers of the pannonian Basin (SE-Hungary). Org Geochem 35:713–723

    Article  Google Scholar 

  • Vijay K, Tianrun Y (2002) HNO3/H3PO4–NANO mediated oxidation of cellulose-preparation and characterization of bioabsorbable oxidized celluloses on high yields and with different levels of oxidation. Carbohydr Polym 48:403–412

    Article  Google Scholar 

  • Vodila G, Palcsu L, Futó I, Zs Szántó (2011) A 9-year record of stable isotope ratios of precipitation in Eastern Hungary: implications on isotope hydrology and regional palaeoclimatology. J Hydrol 400:144–153

    Article  CAS  Google Scholar 

  • Wallner G (1992) Determination of environmental tritium in tree rings. Liq Scintill Spectrom, Radiocarb 1993:349–353

    Google Scholar 

  • White JWC, Lawrence JR, Broecker WS (1994) Modeling and interpreting D/H ratios in tree rings: a test case of white pine in the northeastern United States. Geochim Cosmochim Acta 58(2):851–862

    Article  CAS  Google Scholar 

  • Xiao B, Sun XF, Sun RC (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74:307–319

    Article  CAS  Google Scholar 

  • Yapp CJ, Epstein S (1982) Climatic significance of the hydrogen isotope ratios in tree cellulose. Nature 297:636–639

    Article  CAS  Google Scholar 

  • Zanazzi A, Mora G (2005) Paleoclimatic implications of the relationship between oxygen isotope ratios of moss cellulose and source water in wetlands of lake superior. Chem Geol 222(3–4):281–291

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.2.A-11/1/KONV-2012-0043 ‘ENVIKUT’.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Palcsu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 564 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kéri, M., Palcsu, L., Túri, M. et al. 13C NMR analysis of cellulose samples from different preparation methods. Cellulose 22, 2211–2220 (2015). https://doi.org/10.1007/s10570-015-0642-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0642-y

Keywords

Navigation