Skip to main content
Log in

Electrospinning and thermal characterization of nitrocellulose nanofibers containing a composite of diaminofurazan, aluminum nano-powder and iron oxide nanoparticles

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Electrospinning was used to fabricate composite nanofibers based on nitrocellulose (NC), and some additives comprising aluminum nanoparticles, Fe2O3 nanoparticles and diaminofurazan (DAF). The appropriate mechanical properties (such as elasticity, stiffness and tensile strength) accompanied by the suitable combustion rate of these fibers make them attractive for the utilization in the propellant formulations. The results of this work show that the average diameter of electrospun composite nanofibers (NC fibers containing Al/Fe2O3/DAF) is 80 nm. Thermal behavior of the fabricated nanofibers was characterized by DSC technique. The results showed that thermal decomposition of the nanofibers happens at the temperature 190 °C. In this study, two non-isothermal kinetics analysis methods (i.e., Kissinger and Starink) were used to predict kinetic parameters of thermal decomposition, such as activation energy and frequency factor; as well as, thermodynamic parameters (ΔG#, ΔH#, and ΔS#). The results yield activation energies about 219 kJ mol−1 for thermal decomposition of the nanofibers. Moreover, it was found that the thermal stability of Al/Fe2O3/NC nanofibers in the presence of DAF improves and hence it has a positive effect on the safety of this nanocomposite.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abusaidi H, Ghaieni HR, Pourmortazavi SM, Motamed-Shariati SH (2016) Effect of nitro content on thermal stability and decomposition kinetics of nitro-HTPB. J Therm Anal Calorim 124:935–941

    Article  CAS  Google Scholar 

  • An T, Zhao FQ, Pei Q, Xiao LB, Xu SY, Gao HX, Xing XL (2011) Preparation, characterization and combustion catalytic activity of nanoparticle super thermites. Chin J Inorg Chem 27:231–238

    CAS  Google Scholar 

  • Arkhipov VA, Korotkikh AG (2012) The influence of aluminum powder dispersity on composite solid propellants ignitability by laser radiation. Combust Flame 159:409–415

    Article  CAS  Google Scholar 

  • Bergshoef MM, Vancso GJ (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv Mater 11:1362–1365

    Article  CAS  Google Scholar 

  • Breczewski T, Lopez-Echarri A, Rubio-Pena L, Aroyo MI, Ruiz-Larrea I, Bocanegra EH (2007) Experimental study of the ferroelastic phase transition in urea/n-heptadecane composite. J Phys Chem B 111:5218–5224. https://doi.org/10.1021/jp067115v

    Article  CAS  PubMed  Google Scholar 

  • Chen GFS, Liu HQ (2009) Studies of ultrafine cellulose fiber reinforced soy protein isolate composite film with high light transmittance. Chem J Chin Univ 30:417–421 (in Chinese)

    Google Scholar 

  • Chen L, Bromberg L, Hatton TA (2008) Electrospun cellulose acetate fibers containing chlorhexidine as a bactericide. Polymer 49:1266–1275

    Article  CAS  Google Scholar 

  • Dokhan A, Price E, Seitzman J, Sigman R (2002) The effects of bimodal aluminum with ultrafine aluminum on the burning rates of solid propellants. Proc Combust Inst 29:2939–2946

    Article  CAS  Google Scholar 

  • Katoh K et al (2010) Thermal behavior of nitrocellulose with inorganic salts and their mechanistic action. Propllants Explos Protech 35:461–467

    Article  CAS  Google Scholar 

  • Kim JS, Reneker DH (1999) Mechanical properties of composites using ultrafine electrospun fibers. Polym Compos 20:124–131

    Article  CAS  Google Scholar 

  • Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702

    Article  CAS  Google Scholar 

  • Klapçtke TM, Schmid PC, Stierstorfer J (2015) Crystal structures of furazanes. Crystals 5:418–432

    Article  CAS  Google Scholar 

  • Kohsari I, Shariatinia Z, Pourmortazavi SM (2016) Antibacterial electrospun chitosan–polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydr Polym 140:287–298

    Article  CAS  PubMed  Google Scholar 

  • Koudehi MF, Pourmortazavi SM (2018) Polyvinyl alcohol/polypyrrole/molecularly imprinted polymer nanocomposite as highly selective chemiresistor sensor for 2, 4-DNT vapor recognition. Electroanalysis 30:2302–2310

    Article  CAS  Google Scholar 

  • Li R, Xu H, Hu H, Yang G, Wang J, Shen J (2014) Microstructured Al/Fe2O3/nitrocellulose energetic fibers realized by electrospinning. J Energ Mater 32:50–59

    Article  CAS  Google Scholar 

  • Li Y, Wang X, Kangzhen X, Wang B, Song J, Zhao F (2016) Hermetic thermal behavior of 3,4-Diaminofurazan (DAF). Propellant Explos Pyrotech 41:888–892

    Article  CAS  Google Scholar 

  • Lu Z-R, Ding Y-C, Xu Y, Li B-L, Zha Y (2004) Thermal behavior and decomposition kinetics of the complexes of CuX2 (X = NO3, Br, Cl and ClO4) with 3,3′-Dimethyl-1 -(1H-1,2,4-triazol-1-yl)-2-butanone. Chin J Chem 22:1078–1090

    Google Scholar 

  • Luu YK, Kim K, Hsiao BS, Hadjiargyrou M (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Controll Release 89:341–351

    Article  CAS  Google Scholar 

  • Ma QY, Yang RJ (1989) Catalytic action of MgO for the combustion of nitrocellulose. Chin J Catal 10:87–91

    CAS  Google Scholar 

  • Ma Z, Kotaki M, Yong T, He W, Ramakrishna S (2005) Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26:2527–2536. https://doi.org/10.1016/j.biomaterials.2004.07.026

    Article  CAS  PubMed  Google Scholar 

  • Mahajan RR, Makashir PS, Agrawal JP (2001) Combustion behavior of nitrocellulose and its complexes with copper oxide. J Therm Anal Calorim 65:935–942

    Article  CAS  Google Scholar 

  • Mench MM, Yeh CL, Kuo KK (1998) Propellant burning rate enhancement and thermal behavior of ultra-fine aluminum powders (Alex). In: 29th International annual conference of ICT, Karlsruhe, Germany, 30 June–33 July

  • Mirzajani V, Farhadi K, Pourmortazavi SM (2018) Catalytic effect of lead oxide nano-and microparticles on thermal decomposition kinetics of energetic compositions containing TEGDN/NC/DAG. J Therm Anal Calorim 131:937–948

    Article  CAS  Google Scholar 

  • Pagoria PF (2002) A review of energy materials synthesis. Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  • Pourmortazavi S, Hosseini S, Rahimi-Nasrabadi M, Hajimirsadeghi S, Momenian H (2009) Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater 162:1141–1144

    Article  CAS  PubMed  Google Scholar 

  • Pourmortazavi SM, Rahimi-Nasrabadi M, Kohsari I, Hajimirsadeghi SS (2011) Non-isothermal kinetic studies on thermal decomposition of energetic materials: KNF and NTO. J Therm Anal Calorim 110:857–863

    Article  CAS  Google Scholar 

  • Pourmortazavi SM, Marashianpour Z, Karimi MS, Mohammad-Zadeh M (2015a) Electrochemical synthesis and characterization of zinc carbonate and zinc oxide nanoparticles. J Mol Struct 1099:232–238

    Article  CAS  Google Scholar 

  • Pourmortazavi SM et al (2015b) Thermal decomposition kinetics of electrospun azidodeoxy cellulose nitrate and polyurethane nanofibers. J Therm Anal Calorim 119:281–290

    Article  CAS  Google Scholar 

  • Pourmortazavi SM, Farhadi K, Mirzajani V, Mirzajani S, Kohsari I (2016) Study on the catalytic effect of diaminoglyoxime on thermal behaviors, non-isothermal reaction kinetics and burning rate of homogeneous double-base propellant. J Therm Anal Calorim 125:121–128

    Article  CAS  Google Scholar 

  • Pourmortazavi SM, Rahimi-Nasrabadi M, Rai H, Jabbarzadeh Y, Javidan A (2017) Effect of nanomaterials on thermal stability of 1, 3, 6, 8-tetranitro carbazole. Cent Eur J Energ Mater 14:201–216

    Article  CAS  Google Scholar 

  • Pourmortazavi SM, Mirzajani V, Farhadi K (2018a) Thermal behavior and thermokinetic of double-base propellant catalyzed with magnesium oxide nanoparticles. J Therm Anal Calorim. https://doi.org/10.1007/s10973-018-7904-5

    Article  Google Scholar 

  • Pourmortazavi SM, Rahimi-Nasrabadi M, Karimi MS, Mirsadeghi S (2018b) Evaluation of photocatalytic and supercapacitor potential of nickel tungstate nanoparticles synthesized by electrochemical method. New J Chem 42:19934–19944. https://doi.org/10.1039/C8NJ05297B

    Article  CAS  Google Scholar 

  • Prog ELD (2009) Metal-based reactive nanomaterials. Energy Combust Sci 35:141–167

    Article  CAS  Google Scholar 

  • Qiu L et al (2016) Investigation of the solubility of 3,4-diaminofurazan (DAF) and 3,3′-diamino-4,4′-azoxyfurazan (DAAF) at temperatures between 293.15 K and 313.15 K. Propellant Explos Pyrotech 41:883–887

    Article  CAS  Google Scholar 

  • Sadeghipour S, Ghaderian J, Wahid MA (2011) Advances in aluminum powder usage as an energetic material and applications for rocket propellant. In: 4th International meeting of advances in thermofluids, Melaka, Malaysia 3–4 Oct

  • Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS (2011) An investigation on decomposition kinetics and thermal properties of copper-fueled pyrotechnic compositions. Combus Sci Technol 183:575–587

    Article  CAS  Google Scholar 

  • Shamsipur M, Pourmortazavi SM, Fathollahi M (2012) Kinetic parameters of binary iron/oxidant pyrolants. J Energ Mater 30:97–106

    Article  CAS  Google Scholar 

  • Shehata AB, Hassan MA, Nour MA (2003) Effect of new poly 2-acryloyl-N- N0-bis (4-nitrophenyl) propandiamide and poly 2-acryloyl-N, N0-bis (4-methylphenyl) propandiamide and their synergistic action on the stability of nitrocellulose. J Hazard Mater 102:121–136

    Article  CAS  PubMed  Google Scholar 

  • Sheremetev AB et al (2004) Synthesis of secondary and tertiary aminofurazans. Russ Chem Bull 113:596–614

    Article  Google Scholar 

  • Sikder A, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112:1–15

    Article  CAS  PubMed  Google Scholar 

  • Solodyuk GD, Boldyrev MD, Gidaspov BV, Nikolaev VD (1981) Oxidation of 3,4-Diaminofurazan by Peroxide Reagents. Zh Organicheskoi Khim 17:861–865

    CAS  Google Scholar 

  • Sovizi MR, Hajimirsadeghi SS, Naderizadeh B (2009) Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater 168:1134–1139. https://doi.org/10.1016/j.jhazmat.2009.02.146

    Article  CAS  PubMed  Google Scholar 

  • Starink M (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176

    Article  CAS  Google Scholar 

  • Taepaiboon P, Rungsardthong U, Supaphol P (2006) Drug-loaded electrospun mats of poly (vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology 17:2317–2329

    Article  CAS  Google Scholar 

  • Tsai PP, Schreuder-Gibson H, Gibson P (2002) Different electrostatic methods formaking electret filters. J Electrostat 54:333–341

    Article  CAS  Google Scholar 

  • Wang L, Tuo X, Yi C, Zou H, Xu J, Xu W (2009) Theoretical study on the trans-cis isomerization and initial decomposition of energetic azofurazan and azoxyfurazan. J Mol Graph Model 28:81–87. https://doi.org/10.1016/j.jmgm.2009.04.007

    Article  CAS  PubMed  Google Scholar 

  • Wei WX, Cui BB, Jiang XH, Lu LD (2010) The catalytic effect of NiO on thermal decomposition of nitrocellulose. J Therm Anal Calorim 102:863–866

    Article  CAS  Google Scholar 

  • Zeng J, Chen XS, Xu XY (2003) Ultrafine fibers electrospun from biodegradable polymers. J Appl Polym Sci 89:1085–1092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seied Mahdi Pourmortazavi or Somayeh Mirsadeghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmortazavi, S.M., Kohsari, I., Zandavar, H. et al. Electrospinning and thermal characterization of nitrocellulose nanofibers containing a composite of diaminofurazan, aluminum nano-powder and iron oxide nanoparticles. Cellulose 26, 4405–4415 (2019). https://doi.org/10.1007/s10570-019-02388-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02388-y

Keywords

Navigation