Skip to main content

Advertisement

Log in

Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose-based mixed-matrix membranes containing polyethylenimine-modified graphene oxide (PEI-GO) and Zn2+ ions were fabricated and used for gas separation. The incorporation of PEI-GO effectively hinders the crystallinity of regenerated cellulose, and PEI-GO was compatible with cellulose matrix and uniformly distributed within the matrix. X-ray photoelectron spectrum revealed the amino group on GO surface can effectively coordinate with Zn2+ ions in the membrane. The Zn2+ ions content in the membranes increased when increasing the PEI-GO addition. The optimum separation performance was achieved over the membrane with 17 wt‰ PEI-GO (RC-17) wiht the highest zinc content of 24.2 wt%. The corresponding permeability of CO2 is as high as 268.9 Barrer, and the CO2/N2 and CO2/CH4 ideal selectivities could reach 48.9 and 57.4, respectively. The enhancement of CO2 transportation was attributed to both the regulated microstructure of cellulose membrane by PEI-GO and the π-complexation mechanism of Zn2+ ions with CO2 molecules. The prepared membranes would have a highly potential use in the field of CO2 separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adewole JK, Ahmad AL, Ismail S, Leo CP (2013) Current challenges in membrane separation of CO2 from natural gas: a review. Int J Greenh Gas Control 17:46–65

    Article  CAS  Google Scholar 

  • Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Membr Sci 359:115–125

    Article  CAS  Google Scholar 

  • Chung Y-L, Olsson JV, Li RJ, Frank CW, Waymouth RM, Billington SL, Sattely ES (2013) A renewable Lignin–Lactide copolymer and application in biobased composites. ACS Sustain Chem Eng 1:1231–1238

    Article  CAS  Google Scholar 

  • Ebadi Amooghin A, Omidkhah M, Sanaeepur H, Kargari A (2016) Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid®5218 mixed matrix membrane for CO2/CH4 separation. J Energy Chem 25:450–462

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  • Jia M, Feng Y, Qiu J, Zhang X-F, Yao J (2019) Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation. Sep Purif Technol 213:63–69

    Article  CAS  Google Scholar 

  • Lee JH, Hong J, Kim JH, Kang YS, Kang SW (2012) Facilitated CO2 transport membranes utilizing positively polarized copper nanoparticles. Chem Commun 48:5298–5300

    Article  CAS  Google Scholar 

  • Li H, Song ZN, Zhang XJ, Huang Y, Li SG, Mao YT, Ploehn HJ, Bao Y, Yu M (2013) Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342:95–98

    Article  CAS  Google Scholar 

  • Li Y, Chung TS (2008) Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation. J Membr Sci 308:128–135

    Article  CAS  Google Scholar 

  • Li Y, Wang S, He G, Wu H, Pan F, Jiang Z (2015) Facilitated transport of small molecules and ions for energy-efficient membranes. Chem Soc Rev 44:103–118

    Article  Google Scholar 

  • Liao J, Wang Z, Gao C, Li S, Qiao Z, Wang M, Zhao S, Xie X, Wang J, Wang S (2014) Fabrication of high-performance facilitated transport membranes for CO2 separation. Chem Sci 5:2843–2849

    Article  CAS  Google Scholar 

  • Lin R, Ge L, Hou L, Strounina E, Rudolph V, Zhu Z (2014) Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance. ACS Appl Mater Interfaces 6:5609–5618

    Article  CAS  Google Scholar 

  • Liu J, Liu Z, Barrow CJ, Yang W (2015) Molecularly engineered graphene surfaces for sensing applications: a review. Anal Chim Acta 859:1–19

    Article  CAS  Google Scholar 

  • Liu L, Huang G, Song P, Yu Y, Fu S (2016) Converting industrial alkali lignin to biobased functional additives for improving fire behavior and smoke suppression of polybutylene succinate. ACS Sustain Chem Eng 4:4732–4742

    Article  CAS  Google Scholar 

  • MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P (2010) An overview of CO2 capture technologies. Energy Environ Sci 3:426–443

    Article  Google Scholar 

  • Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications: a review. Energy 35:2610–2628

    Article  CAS  Google Scholar 

  • Peng D, Wang S, Tian Z, Wu X, Wu Y, Wu H, Xin Q, Chen J, Cao X, Jiang Z (2017) Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation. J Membr Sci 522:351–362

    Article  CAS  Google Scholar 

  • Quan S, Li SW, Xiao YC, Shao L (2017) CO2-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO2 capture. Int J Greenh Gas Control 56:22–29

    Article  CAS  Google Scholar 

  • Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381

    Article  CAS  Google Scholar 

  • Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates, ACS Sustain. Chem Eng 1:858–870

    CAS  Google Scholar 

  • Sen S, Losey BP, Gordon EE, Argyropoulos DS, Martin JD (2016) Ionic liquid character of zinc chloride hydrates define solvent characteristics that afford the solubility of cellulose. J Phys Chem B 120:1134–1141

    Article  CAS  Google Scholar 

  • Shan C, Wang L, Han D, Li F, Zhang Q, Zhang X, Niu L (2013) Polyethyleneimine-functionalized graphene and its layer-by-layer assembly with Prussian blue. Thin Solid Films 534:572–576

    Article  CAS  Google Scholar 

  • Shi Y, Yu B, Zheng Y, Yang J, Duan Z, Hu Y (2018) Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin. J Colloid Interface Sci 521:160–171

    Article  CAS  Google Scholar 

  • Wang S, Liu Y, Zhang M, Shi D, Li Y, Peng D, He G, Wu H, Chen J, Jiang Z (2016a) Comparison of facilitated transport behavior and separation properties of membranes with imidazole groups and zinc ions as CO2 carriers. J Membr Sci 505:44–52

    Article  CAS  Google Scholar 

  • Wang S, Lu A, Zhang L (2016b) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206

    Article  CAS  Google Scholar 

  • Wang S, Xie Y, He G, Xin Q, Zhang J, Yang L, Li Y, Wu H, Zhang Y, Guiver MD, Jiang Z (2017) Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations. Angew Chem Int Ed 56:14246–14251

    Article  CAS  Google Scholar 

  • Wu H, Li X, Li Y, Wang S, Guo R, Jiang Z, Wu C, Xin Q, Lu X (2014) Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. J Membr Sci 465:78–90

    Article  CAS  Google Scholar 

  • Xiang L, Pan Y, Jiang J, Chen Y, Chen J, Zhang L, Wang C (2017a) Thin poly(ether-block-amide)/attapulgite composite membranes with improved CO2 permeance and selectivity for CO2 /N2 and CO2 /CH4 Chem Eng Sci 160:236–244

    Article  CAS  Google Scholar 

  • Xiang L, Sheng L, Wang C, Zhang L, Pan Y, Li Y (2017b) Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2 /CH4 separation. Adv Mater 29:1606999

    Article  Google Scholar 

  • Xu Q, Chen C, Rosswurm K, Yao T, Janaswamy S (2016) A facile route to prepare cellulose-based films. Carbohydr Polym 149:274–281

    Article  CAS  Google Scholar 

  • Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromol 12:2766–2771

    Article  CAS  Google Scholar 

  • Yuan B, Xing W, Hu Y, Mu X, Wang J, Tai Q, Li G, Liu L, Liew KM, Hu Y (2016) Boron/phosphorus doping for retarding the oxidation of reduced graphene oxide. Carbon 101:152–158

    Article  CAS  Google Scholar 

  • Zhang C, Hao R, Liao H, Hou Y (2013) Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2:88–97

    Article  CAS  Google Scholar 

  • Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114

    Article  CAS  Google Scholar 

  • Zhang J, Xin Q, Li X, Yun M, Xu R, Wang S, Li Y, Lin L, Ding X, Ye H, Zhang Y (2019) Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation. J Membr Sci 570–571:343–354

    Article  Google Scholar 

  • Zhang XF, Feng Y, Huang C, Pan Y, Yao J (2017) Temperature-induced formation of cellulose nanofiber film with remarkably high gas separation performance. Cellulose 24:5649–5656

    Article  CAS  Google Scholar 

  • Zhang XF, Feng Y, Wang Z, Jia M, Yao J (2018a) Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation. J Membr Sci 568:10–16

    Article  CAS  Google Scholar 

  • Zhang XF, Hou T, Chen J, Feng Y, Li B, Gu X, He M, Yao J (2018b) Facilitated transport of CO2 through the transparent and flexible cellulose membrane promoted by fixed-site carrier. ACS Appl Mater Interfaces 10:24930–24936

    Article  CAS  Google Scholar 

  • Zulhairun AK, Ismail AF (2014) The role of layered silicate loadings and their dispersion states on the gas separation performance of mixed matrix membrane. J Membr Sci 468:20–30

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial supports from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors also thank the testing services from Advanced Analysis & Testing Center of Nanjing Forestry University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming He or Jianfeng Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, T., Shu, L., Guo, K. et al. Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation. Cellulose 27, 3277–3286 (2020). https://doi.org/10.1007/s10570-019-02962-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02962-4

Keywords

Navigation